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What this tutorial is about

• A tutorial about a special type of
application contexts for supervised learning
technologies in which our interest is not at
the individual level but at the aggregate
level

• Many fields of human activity like:
• social sciences,
• political science
• epidemiology
• ecological modelling
• market research

• ... don’t care about individuals but about
populations; in other words don’t care
about the needle, but about the haystack

• Still a fairly unknown task among
potential users

Andrea Esuli, Alessandro Fabris, Alejandro Moreo, Fabrizio Sebastiani. Learning to Quantify. Springer Nature, 2023. Download for free at
https://bit.ly/3JgEMJO
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What this tutorial is about

• Learning to Quantify (aka quantification)
stands to classification as aggregate data
stand to individual data

• This tutorial is an introduction to this
field, to its applications, to the methods
for performing quantification, and to the
methods for evaluating quantification
systems

Andrea Esuli, Alessandro Fabris, Alejandro Moreo, Fabrizio Sebastiani. Learning to Quantify. Springer Nature, 2023. Download for free at
https://bit.ly/3JgEMJO
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Example applications of quantification

• In many applications of classification, the real goal is determining the relative
frequency of each class in the unlabelled data.
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What is “Learning to Quantify” (a.k.a. quantification)?

• The task is of independent interest in statistics and data mining, while it is
often only functional to generating better classifiers, or to performing other
downstream ML tasks

• Studied in different fields like ML, DM, NLP; different terminology:
• Quantification: “learning to quantify”, “supervised prevalence estimation”,

“class prior estimation”, “prior estimation”, “class distribution estimation”, ...
• Relative frequencies: “prevalence values”, “class priors”, “priors”, “class

fractions”, “class percentages”, ...

• A fully supervised task, but is an “asymmetric” task, since training examples
are individual labelled items and test examples are samples of individual
unlabelled items

(Binary) Task Model
Training Test

Type
Examples Labels Examples Labels

Classification h : X → {+1,−1} Individual items Classes Individual items Classes Symmetric
Regression h : X → R Individual items Real values Individual items Real values Symmetric
Learning from Label Proportions h : 2X → [0, 1] Samples of individual items Real values in [0,1] Samples of individual items Real values in [0,1] Symmetric
Quantification h : 2X → [0, 1] Individual items Classes Samples of individual items Real values in [0,1] Asymmetric
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What is “Learning to Quantify” (a.k.a. quantification)?

• A task “simpler” (i.e., less general) than classification

• Vapnik’s principle : If you possess a restricted amount of information for
solving some problem, try to solve the problem directly and never solve a more
general problem as an intermediate step. It is possible that the available
information is sufficient for a direct solution but is insufficient for solving a
more general intermediate problem.

• Quantification is an independent task on its own right, with dedicated:
• learning methods
• evaluation measures
• experimentation protocols
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The suboptimality of “Classify and Count”

• Quantification can trivially be solved via the Classify and Count (CC) method:

1 Train a classifier
2 Classify all the unlabelled data items in the sample
3 For each class, count how many unlabelled data items have been attributed to

the class
4 Divide each count by the total number of unlabelled data items

• However, CC proves a suboptimal quantification method, for two main
independent reasons:

1 Classifier bias
2 Presence of dataset shift
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1. CC delivers suboptimal results under classifier bias

• Even if it relies on a good classifier, CC is not necessarily a good quantifier:

y = 1 y = 0
ŷ = 1 TP FP
ŷ = 0 FN TN

#ActualPositives = 100 (16.7%)
#ActualNegatives = 500 (83.3%)
#Instances = 600

h1 y = 1 y = 0
ŷ = 1 95 20
ŷ = 0 5 480

#Errors=25, Accuracy=96%
#PredictedPositives=115 (19.1%)
#ActualPositives=100 (16.7%)

h2 y = 1 y = 0
ŷ = 1 70 30
ŷ = 0 30 470

#Errors=60, Accuracy=90%
#PredictedPositives=100 (16.7%)
#ActualPositives=100 (16.7%)

• Paradoxically, for quantification purposes, we should base CC on h2 rather
than on h1

• Different goals:
• Classification: minimize (FN + FP)
• Quantification: minimize |FN − FP|
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2. CC delivers suboptimal results under dataset shift

• Even if it relies on a classifier trained to optimize error balancing, CC may
deliver suboptimal results in the presence of dataset shift (DS – aka dataset
“drift”)

• DS defined as the case in which P(X ,Y ) ̸= Q(X ,Y ), i.e., as the case in
which the IID assumption does not hold

• P: the data distribution from which the training data are sampled
• Q: the data distribution from which the unlabelled (test) data are sampled

• When dataset shift is present, test items are also called out-of-distribution
(OOD) data
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2. CC delivers suboptimal results under dataset shift

• DS may derive
• from variations in the environment that the data represent (real shift); i.e. the

environment is not stationary, and the operating (“test”) conditions were not
the same at training time;

• E.g., prevalence of terrorism-related news before or after 9/11;

• from the fact that the (training) data misrepresent the environment (virtual
shift): i.e., the process of labelling training data may have introduced “sample
selection bias”:

• intentionally (e.g., when oversampling the minority class)
• unintentionally (e.g., if active learning is used)

• CC is suboptimal under DS because CC is usually based on classifiers trained
under the IID assumption, which is not verified under DS

13 / 70



2. CC delivers suboptimal results under dataset shift

• The DS literature identifies three main DS types, depending on whether we
are in the presence of “X → Y problems” (causal learning) or “Y → X
problems” (anti-causal learning)

• In X → Y problems we may write P(X ,Y ) = P(Y |X )P(X )
• E.g., weather forecasting, avalanche prediction from causes
• In this case we may have covariate shift, defined as the case in which

P(X ) ̸= Q(X ) but P(Y |X ) = Q(Y |X )
• E.g., avalanche prediction in different geographical areas

• In Y → X problems we may write P(X ,Y ) = P(X |Y )P(Y )
• E.g., handwritten digit recognition, authorship attribution, predicting illnesses

from symptoms
• In this case we may have prior probability shift (aka “label shift”), defined as

the case in which P(Y ) ̸= Q(Y ) but P(X |Y ) = Q(X |Y )
• E.g., applying to binary digits a handwritten digit recognizer trained on

decimal digits

• We have concept shift if either P(Y |X ) ̸= Q(Y |X )
or P(X |Y ) ̸= Q(X |Y )
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Classification VS Quantification

Classification

• Given a labeled training set,
learn a classifier

h : X → Y

• ŷ = h(x), where x ∈ X is a
feature vector, and
ŷ ∈ {y1, . . . yn} is a class label

• Error:
false positives, false negatives

Quantification

• Given a labelled training set,
learn a quantifier

q : NX → ∆n−1

• p = q(σ), with σ a sample of
feature vectors, and √ a vector

of class prevalence values

• Error:
underestimation, overestimation

• IID assumption • Prior probability shift (PPS)
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Prior Probability Shift (PPS)

16 / 70



Prior Probability Shift (PPS)

16 / 70



Prior Probability Shift (PPS)

16 / 70



Prior Probability Shift (PPS)

16 / 70



Prior Probability Shift (PPS)

16 / 70



CC delivers biased results
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Why does CC deliver biased results?
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CC delivers biased results
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Historical development

• The history of quantification research is highly non-linear (task discovered
and re-discovered from within different disciplines)

• 1st stage : interest in the “estimation of class priors” in machine learning
• Goal : making classifiers robust to the presence of prior probability shift and

better attuned to the characteristics of the data to which they need to be
applied

• Earliest recorded method is (Vucetic & Obradovic, 2001), most influential one
is (Saerens et al., 2002)

• 2nd stage : interest in “quantification” from data mining / text mining
• Goal : estimating quantities and trends from unlabelled data
• Earliest recorded work is (Forman, 2005), where the term “quantification” was

coined
• It is the applications from these fields that have provided the impetus behind

the most recent wave of research in quantification

G. Forman. Counting positives accurately despite inaccurate classification. ECML 2005.

Slobodan Vucetic, Zoran Obradovic: Classification on Data with Biased Class Distribution. ECML 2001.

Marco Saerens, Patrice Latinne, Christine Decaestecker: Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure.
Neural Computation, 2002
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Related but different: Screening tests in epidemiology

• Quantification is reminiscent of “prevalence estimation from screening tests”
in epidemiology

• Screening test : a test that a patient undergoes in order to check if she has a
given pathology; can be used for epidemiological purposes when administered
to a certain population

• Screening tests are often imperfect, i.e., they may generate
• false positives (patient incorrectly diagnosed with the pathology)
• false negatives (patient incorrectly diagnosed to be free from the pathology)

• Testing a patient is thus akin to classifying an item

• Main differences:
• no supervised learning is involved
• a screening test typically has known and fairly constant “sensitivity” (recall)

and “specificity” (1−fallout), while the same usually does not hold for a
classifier

• Some currently used quantification methods indeed derive from methods used
for prevalence estimation from screening tests
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Related but different: Density estimation

• Quantification is similar to density
estimation (e.g., estimating the prevalence
of yellow balls in a large urn containing
coloured balls).

• However, in traditional density estimation

1 We can deterministically assess whether
each item belongs to the class (variable
yj can be observed); in quantification
this does not hold

2 It is impossible / economically not viable
to assess class membership for each
single item (e.g., we do not want to
inspect every single ball in the urn); in
quantification this does not hold
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1. Characterizing the haystack

• Many fields of human activity are not concerned with individual data but
with aggregate data only, often broken down according to variables of
interest (e.g., age group, gender, religion, job type, geographical region).
Examples are

• Social sciences and political sciences
• Epidemiology
• Market research
• Ecological modelling
• ...

• In these fields, whenever the variable of study (Y ) is not explicit,
quantification (instead of classification) is what is needed
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1. Characterizing the haystack: The social sciences

• Computational social science: the big new paradigm spurred by the
availability of big data from social networks

• Within the social sciences, the individuals on which we perform quantification
are persons

• Example quantification endeavours are
• Quantification by topic, e.g., as in establishing the prevalence of a certain

topical class within respondents of an open-ended survey
• Sentiment quantification, e.g., the goal of most works that do “sentiment

classification of Twitter data” is estimating class prevalences
• Stance quantification, i.e., detecting the prevalence of individuals that have a

certain stance towards a given issue or topic (“target”)

• Political science : e.g., predicting election results / monitoring support for a
political party by estimating the prevalence of blog posts / tweets that have a
certain stance towards the party

• Most works in these fields still use “classify and count”, mostly due to lack of
awareness of the existence of alternative quantification methods
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1. Characterizing the haystack: The social sciences

Figure: Temporal trend in the proportions of tweets supporting or opposing military
intervention in Egypt during the “Arab spring” in summer 2013.

Borge-Holthoefer, J., Magdy, W., Darwish, K., and Weber, I. (2015). Content and network dynamics
behind Egyptian political polarization on Twitter. In Proceedings of CSCW 2015. 29 / 70



1. Characterizing the haystack: Ecological modelling

Figure: Using quantification for estimating the prevalence of different species of living
beings on the seabed; red circles indicate the locations where the training data were
collected while blue circles indicate the locations where the unlabelled data to which the
trained model was applied were collected.

Beijbom, O., Hoffman, J., Yao, E., Darrell, T., Rodriguez-Ramirez, A., Gonzalez-Rivero, M., and
Hoegh-Guldberg, O. (2015). Quantification in-the-wild: Datasets and baselines. NIPS 2015 Workshop on
Transfer and Multi-Task Learning.
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1. Characterizing the haystack: Ecological modelling

Figure: Class prevalence of each of 32 living species in seabed cover as estimated via
quantification technology; the different columns represent different samples on which
quantification has been performed.

Beijbom, O., Hoffman, J., Yao, E., Darrell, T., Rodriguez-Ramirez, A., Gonzalez-Rivero, M., and
Hoegh-Guldberg, O. (2015). Quantification in-the-wild: Datasets and baselines. NIPS 2015 Workshop on
Transfer and Multi-Task Learning.
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1. Characterizing the haystack

• Market Research : estimating the distribution of consumers’ attitudes
towards products, product features, or marketing strategies; e.g.,

• quantifying customers’ attitudes from verbal responses to open-ended
questions (Esuli and Sebastiani, 2010)

• Epidemiology : tracking the incidence and the spread of diseases; e.g.,
• estimate pathology prevalence from clinical reports where pathologies are

diagnosed
• estimate the prevalence of different causes of death from “verbal autopsies”,

i.e., from verbal accounts of symptoms

• Other :
• estimating the proportions of different types of cells in blood samples
• estimating the proportion of no-shows within a set of bookings

A. Esuli and F. Sebastiani. Machines that learn how to code open-ended survey data. International Journal of Market Research 52(6):775–800, 2010.
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2. Applications to downstream tasks

• Improving classification accuracy : improving the performance of classifiers
when deployed on data characterized by prior probability shift

• Estimating the accuracy of a classifier on out-of-distribution data

• Improving word sense disambiguation accuracy : e.g., tuning a word sense
disambiguator to a domain characterized by sense priors different from those
of the training set

• e.g., sense of “bank” in financial documents vs. hydraulic engineering papers

• Estimating the fairness under unawareness wrt a sensitive attribute
• classifiers (automatic decision making, e.g., loan approved/denied)
• rankers (e.g., job candidates)

Marco Saerens, Patrice Latinne, Christine Decaestecker: Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure.
Neural Computation, 2002

YS Chan and HT Ng. Estimating class priors in domain adaptation for word sense disambiguation. Proceedings of ACL 2006.

A Fabris, A Esuli, A Moreo, and F Sebastiani. Measuring Fairness under Unawareness of Sensitive Attributes: A Quantification-Based Approach.
Journal of Artificial Intelligence Research 2023.
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Notation and terminology

• Domain X of items (documents), set Y of classes

• Different brands of classification :
• Binary classification: each item has exactly one of Y = {y1, y2} (which we

often write Y = {⊕,⊖})
• Single-label multi-class classification (SLMC): each item has exactly one of

Y = {y1, ..., yn}, with n > 2
• Multi-label multi-class classification (MLMC): each item may have zero, one,

or several among Y = {y1, ..., yn}, with n > 1
• MLMC is often reduced to binary by solving n independent binary classification

problems

• Ordinal classification (aka “ordinal regression”): each item has exactly one of
Y = (y1 ⪯ ... ⪯ yn), where ⪯ is a total order and n > 2

• Metric regression: each item has a real-valued score from the range [α, β]

• For each such brand of classification we will be interested in its
“quantification equivalent”

• Most of our discussion will be framed in terms of SLMC quantification
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How do we evaluate quantification methods?

• Evaluating quantification means measuring how well a predicted probabilistic
distribution p̂(y) fits a true distribution p(y)

• The goodness of fit between two categorical distributions can be computed
via divergence functions D(p, p̂) which enjoy

1 D(p, p̂) = 0 only if p = p̂ (identity of indiscernibles)

2 D(p, p̂) ≥ 0 (non-negativity)

• Divergences are less restrictive than distances, which must additionally enjoy
• D(p, q) implies D(q, p) (symmetry)
• D(p, q) + D(q, r) ≥ D(p, r) (triangle inequality)

in quantification we use divergences (note distances are also divergences)

F. Sebastiani. Evaluation measures for quantification: An axiomatic approach, Information Retrieval Journal, 2019.
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How do we evaluate quantification methods?

• Binary case: Let us define p = (p1, p2) and p′ = (p′1, p
′
2), two binary

distributions such that p1 < p′1 ≤ p′2 < p2, and pt the distribution obtained
from p such that pt = (p1 + t, p2 − t).

3 impartiality: D(p, p−t) = D(p, p+α)

• Enforces the notion that underestimation and overestimation are equally serious
• E.g., if D enjoys impartiality, it considers estimating p(y) = .20 as p̂(y) = .10

or as p̂(y) = .30 equally serious mistakes

4 relativity: D(p, p+t) > D(p′, p′
+t)

• Enforces the notion that estimation errors of the same absolute magnitude are
more serious for rare classes;

• E.g., if D enjoys relativity, it considers predicting p̂(y) = 0.01 when p(y) = 0.02
more serious than predicting p̂(y) = 0.49 when p(y) = 0.50
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How do we evaluate quantification methods?

• Q: Which evaluation function is more desirable?

• A: It depends on the application; arguably, for some applications relativity is
desired, while for some others it is not; e.g.

• Application 1: estimating the prevalence of illnesses in a given region / age
group. Here, relativity is desired (since, e.g., a .01 estimation error may be
tolerable if p(y) = .40 but not if p(y) = .0001).

• Application 2: predicting the prevalence of no-shows on a flight-by-flight
basis. Here, relativity is undesired (since, e.g., a .02 estimation error has the
same impact if p(y) = .05 and if p(y) = .20).

• Identity of indiscernibles and non-negativity are arguably always desirable
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How do we evaluate quantification methods?

• Divergences frequently used for evaluating (binary, SLMC, and MLMC)
quantification are

• AE(p, p̂) =
1

|Y|
∑
y∈Y

|p̂(y)− p(y)| (Absolute Error)

• RAE(p, p̂) =
1

|Y|
∑
y∈Y

|p̂(y)− p(y)|
p(y)

(Relative Absolute Error)

• KLD(p, p̂) =
∑
y∈Y

p(y) log
p(y)

p̂(y)
(Kullback-Leibler Divergence)

Impartiality Relativity
Absolute Error Yes No

Relative Absolute Error Yes Yes
Kullback-Leibler Divergence No Yes

• AE and RAE are indeed the most satisfactory measures of quantification error

• For MLMC quantification, “macroaveraged” versions of these measures,
obtained by averaging them across the classes, are used

Fabrizio Sebastiani. Evaluation Measures for Quantification: An Axiomatic Approach. Information Retrieval Journal 23(3):255-288, 2020
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How do we evaluate quantification methods?

• RAE and KLD may sometimes be undefined due to the presence of zero
denominators.

• To solve this we can smooth p(y) and p̂(y) via additive smoothing and use
the smoothed versions in place of the original ones; the smoothed version of
p(y) is

ps(y) =
ϵ+ p(y)

ϵ|Y|+
∑
y∈Y

p(y)
=

ϵ+ p(y)

ϵ|Y|+ 1
(1)

• ϵ =
1

2|S |
is often used as a smoothing factor

• For example: RAE between two smoothed distributions simplifies to

RAE(ps , p̂s) =
1

|Y|
∑
y∈Y

|p̂(y)− p(y)|
p(y) + ϵ
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Multi-objective loss functions

• The “paradox of quantification”:

h1
actual

y y

pred
y 0 1000
y 1000 0

h2
actual

y y

pred
y 990 0
y 10 1000

• h1 yields better AE / RAE / KLD than h2, but we intuitively prefer h2 to h1
• It is difficult to trust an aggregative quantifier if it is not based on a good

enough classifier ...
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Multi-objective loss functions

• The MOLF multi-objective loss function (Milli et al., 2013) strives to keep
both classification and quantification error low

MOLF(p, p̂) =
∑
yj∈Y

|FP2
j −FN2

j |

=
∑
yj∈Y

(FNj +FPj) · |FNj −FPj |

since
• |FNj −FPj | is a measure of quantification error
• (FNj +FPj) is a measure of classification error

• It makes sense to use MOLF as a loss function to minimize, but not as a
measure for evaluating quantification accuracy

• It applies to “aggregative” quantifiers only

L. Milli, A. Monreale, G. Rossetti, F. Giannotti, D. Pedreschi, F. Sebastiani. Quantification trees. ICDM 2013, pp. 528–536.

J. Barranquero, J. D́ıez, and J. del Coz. Quantification-oriented learning based on reliable classifiers. Pattern Recognition 48(2):591–604, 2015.

42 / 70



Measures for evaluating ordinal quantification

• Ordinal classification ≡ SLMC classification when there is a total order on
the n classes

• Important in the social sciences, where ordinal scales are often used to elicit
human evaluations (e.g., product reviews)

• Important also in astrophysics, where ordinal scales are used to “bin” energy
levels of astroparticles

• The most frequently used measure for ordinal quantification is the
(normalized) Earth Mover’s Distance (aka “Wasserstein metric”)

EMD(p, p̂) =
1

|Y| − 1

|Y|−1∑
j=1

|
j∑

i=1

p̂(yi )−
j∑

i=1

p(yi )| (2)

• The EMD is the “ordinal analogue” of absolute error

A. Esuli and F. Sebastiani. Sentiment quantification. IEEE Intelligent Systems 25(4):72–75, 2010.

Mirko Bunse, Alejandro Moreo, Fabrizio Sebastiani, and Martin Senz. Ordinal quantification through regularization. ECML/PKDD 2022.
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Measures for evaluating ordinal quantification

• The EMD may be seen as measuring the “minimum effort” to turn the
predicted distribution into the true distribution, where the effort is measured
by

• the probability masses that need to be moved between one class and another;
• the “distance” travelled by these probability masses
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Experimental protocols for evaluating quantification

• Any test set used for testing the accuracy of classification can obviously be
used as a sample σ also for evaluating quantification

• However, while for classification a set of k unlabelled datapoints provides k
test datapoints, for quantification a set of k unlabelled datapoints provides
only 1 test datapoint

• An experimental protocol for quantification is an algorithm for extracting,
from a test set of labelled datapoints, a set U = {σ1, σ2, ...} of samples on
which quantifiers should be tested

• Different protocols must be chosen for different quantification tasks (binary,
multiclass, multilabel, ordinal)

G. Forman. Counting positives accurately despite inaccurate classification. ECML 2005.

Andrea Esuli, Alejandro Moreo, and Fabrizio Sebastiani. LeQua@CLEF2022: Learning to Quantify. ECIR 2022.

Alejandro Moreo, Manuel Francisco, and Fabrizio Sebastiani. Multi-Label Quantification. arXiv:2211.08063 [cs.LG].

Mirko Bunse, Alejandro Moreo, Fabrizio Sebastiani, and Martin Senz. Ordinal quantification through regularization. ECML/PKDD 2022.
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Experimental protocols for evaluating quantification

• Two main protocols are used in the literature:
• The artificial-prevalence protocol (APP): take a standard dataset split into L

and U, and extract a set of samples that exhibits the highest possible diversity
in terms of class distribution

• Pros: challenging, since some samples exhibit high amounts of PPS
• Cons: samples with unrealistically high amounts of PPS may influence the

results too much + only deals with PPS

• The natural-prevalence protocol (NPP): pick one or more standard datasets
that represent a wide array of class prevalence values

• Pros: experimental setting is realistic
• Cons: class prevalence values and shift values may not be varied at will

• The NPP has almost been abandoned now, due to the difficulty of finding
datasets that are challenging enough, i.e., displaying substantial amounts of
PPS, and sizeable enough

• Research is ongoing for defining protocols that simulate types of dataset shift
other than PPS

G. Forman. Counting positives accurately despite inaccurate classification. ECML 2005.

A. Esuli and F. Sebastiani. Optimizing text quantifiers for multivariate loss functions. ACM Transactions on Knowledge Discovery and Data,
9(4):Article 27, 2015.
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The artificial-prevalence protocol in the multiclass case

• The APP in the binary case consists of

1 establishing a grid of values in the [0,1] interval, e.g.,
G = {0.00, 0.05, ..., 0.95, 1.00}

2 for each value α ∈ G extract, by random sampling with replacement, m
samples of k datapoints each such that the prevalence pσ(y1) of the positive
class in the sample is α;

3 use the set of |G | ×m extracted samples as the test set for evaluating
quantifiers.
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The APP for the binary case: An example
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The artificial-prevalence protocol in the multiclass case

• Using the APP in the multiclass case can be problematic since, given a grid
G , the number of samples that can be extracted via the above method is
O(gn)

• We can then resort to extracting samples whose distribution is extracted
uniformly at random from the unit (n − 1)-simplex

∆n−1 = {p1, . . . , pn : pi ≥ 0,
n∑

i=1

pi = 1}

• However, in order to guarantee randomness we need to avoid naive extraction
algorithms ...
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Sampling uniformly at random from the unit simplex

• The naive algorithm (NA):

1 Given a set of classes Y,
generate a vector
A = ⟨a1, ..., a(|Y|−1)⟩ of
datapoints sampled uniformly at
random from [0,1]

2 Obtain a vector
P = ⟨p1, ..., p|Y|⟩ by defining

pi =

{
ai
∏i−1

j=1 (1− aj) if i < |Y|
(1−

∑|Y|−1
j=1 pj) if i = |Y|

3 Use P as the distribution of
class prevalence values for
generating sample σ

Figure: Distribution of datapoints
⟨p1, p2, p3⟩ sampled via the NA on the unit
2-simplex.
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Sampling uniformly at random from the unit simplex

• The IID algorithm (IIDA):

1 Given a set of classes Y,
generate a vector
A = ⟨a1, ..., a|Y|⟩ of datapoints
sampled uniformly at random
from [0,1]

2 Obtain a vector
P = ⟨p1, ..., p|Y|⟩ by normalizing
A to unit length

3 Use P as the distribution of
class prevalence values for
generating sample σ

Figure: Distribution of datapoints
⟨p1, p2, p3⟩ sampled via the IIDA on the
unit 2-simplex.

51 / 70



Sampling uniformly at random from the unit simplex

• The Kraemer algorithm (KA):

1 Given a set of classes Y,
generate a vector
A = ⟨a1, ..., a(|Y|−1)⟩ of
datapoints sampled uniformly at
random from [0,1]

2 Sort the ai ’s to obtain
B = ⟨b1 ≤ ... ≤ b(|Y|−1)⟩, and
define b0 = 0 and b|Y| = 1

3 Obtain a vector
P = ⟨p1, ..., p|Y|⟩ by defining
pi = bi − b(i−1) for all
i ∈ {1, ..., |Y|}

4 Use P as the distribution of
class prevalence values for
generating sample σ

Figure: Distribution of datapoints
⟨p1, p2, p3⟩ sampled via the KA on the unit
2-simplex.

Smith, Noah A. and Tromble, Roy W., Sampling uniformly from the unit simplex, Technical report, Johns Hopkins University, 2004.
https://www.cs.cmu.edu/~nasmith/papers/smith+tromble.tr04.pdf
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Model Selection in Quantification

• The performance of machine learning algorithms typically depends on how
their hyperparameters are set.

• The process of hyperparameter optimisation is known as model selection, and
consists of testing how well the model fares with different combinations of
hyperparameters on held-out validation data.

• Model selection is inherently related to evaluation.

• Since quantification has specific evaluation measures and specific evaluation
protocols, model selection should be in agreement with these.

Moreo & Sebastiani. Re-assessing the “classify and count” quantification method. ECIR 2021.
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Model Selection in Quantification

• Many papers have instead carried out model selection mimicking the
classification approach, i.e.:

LTr
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fit(M; θ1)

fit(M; θ2 )

fit(M; θ3)

fit(M; θ4)

0.55
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0.60

0.61

U

L

0.44
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Model Selection in Quantification

• This is theoretically flawed: model selection has to be carried out following a
quantification-oriented evaluation protocol:
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Structure of this tutorial

1 Introduction

2 Applications of quantification in ML, DM, NLP

3 Evaluation measures and evaluation protocols for quantification

4 Supervised learning methods for quantification

5 QuaPy: an Open-source library for quantification

6 Advanced topics

7 Conclusions



Advanced topics (hints)

• Cross-lingual quantification

• Multi-label quantification

• Ordinal quantification

• Regression quantification

• Quantification for networked data

• Quantification for DS types other than PPS

• ...
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Cross-lingual quantification

• An instance of transfer learning in which the supervised information available
is in one language, but we want to deploy a model in another language.

• Example:
• training documents are book reviews in English
• test documents are book reviews in Spanish

• Problem: predict the percentage of positive opinions in books reviews written
in Spanish

• Solution:
• Adopt any aggregative quantifier (e.g., SLD)
• Use a cross-lingual classifier as the underlying classifier (e.g., DCI)

• Less than 3% of error!

Esuli, A., Moreo, A., & Sebastiani, F. (2020). Cross-lingual sentiment quantification. IEEE Intelligent Systems, 35(3), 106-114.

59 / 70



Multi-label quantification

• Multi-label multi-class (MLMC) quantification: each item may have zero,
one, or several among Y = {y1, ..., yn}, with n > 1

• MLMC quantification is often reduced to binary quantification by solving n
independent binary quantification problems; this is the baseline that all
“truly” MLMC quantification methods are supposed to beat

• This “reduction to binary” does not allow leveraging possible stochastic
correlations between classes; e.g., we may notice from training data that
many datapoints in class “Technology” are also in class “Startups”

• Work in MLMC classification has shown that leveraging these correlations
brings about higher accuracy

60 / 70



Multi-label quantification

• For simplicity, we will deal with aggregative quantification methods only

• The most trivial class of solutions to MLMC quantification is BC+BA, which
consists of using n binary classifiers and, on top of them, n instances of a
binary aggregative quantification method

• A slightly less trivial class of solutions is MLC+BA, which consists of using a
truly multi-label classifier and, on top of it, n instances of a binary
aggregative quantification method

• Another less trivial class of solutions is BC+MLA, which consists of using n
independent binary classifiers and, on top of them, a truly multi-label
aggregative quantification method

• The most interesting class of solutions is MLC+MLA, which consists of using
a truly multi-label classifier and, on top of it, a truly multi-label aggregative
quantification method

A Moreo, M Francisco, F Sebastiani. ACM Transactions on Knowledge Dicovery and Data, 2023.
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Multi-label quantification

Alejandro Moreo, Manuel Francisco, Fabrizio Sebastiani. Multi-label quantification. arXiv:2211.08063 [cs.LG], 2022.
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Multi-label quantification

• Best-performing system so far: the regression-based MLC+MLA
quantification method (Moreo et al. 2023):

1 Take a multi-label quantifier q trained via a MLC+BA quantification method
2 Put a regressor r : Rn → Rn on top of it that takes as input a vector of n

“uncorrected” prevalence values and returns a vector of n “corrected”
prevalence values

3 Train the regressor with a set of pairs (p̂q
σi
, pσi ), where

• p̂qσi
is the vector of the n prevalence values estimated by q

• pσi is the vector of the n true prevalence values

• The regressor is thus trained to leverage the stochastic dependencies among
the classes

• This method can be used also if the MLC+BA underlying method is
non-aggregative

• (Moreo et al. 2023) provide an experimental protocol specific to multi-label
quantification, that can be used for evaluation and also for generating the
σi ’s to be used in Step 3 above

A Moreo, M Francisco, F Sebastiani. ACM Transactions on Knowledge Dicovery and Data, 2023.
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Ordinal quantification

• Ordinal quantification is SLMC quantification when there is a total order
Y = (y1 ⪯ ... ⪯ yn) on the classes

• Mis-assigning probability mass to a neighbouring class is less serious than
mis-assigning it to a faraway class; EMD is thus a good evaluation measure;

• Few research works conducted on this task
• Early OQ algorithms are (da San Martino et al., 2016) and (Esuli, 2016)
• “Unfolding” algorithms in the astrophysics literature (Bunse, 2018)
• More recent algorithms are (Bunse et al., 2022) and (Castaño et al, 2022)
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Ordinal quantification

• Class of OQ methods based on regularization (Bunse et al., 2022, 2024)

• Basic idea: take an algorithm for SLMC quantification, and introduce a
“regularization” that penalizes “unlikely” assignments of probability mass

• “Likely ≈ Smooth”, i.e., sharp differences between pσ(yi ) and pσ(yi+1) are
considered unlikely

• Several algorithms proposed along these lines, including o-ACC, o-PACC,
o-SLD

65 / 70



Ordinal quantification

• E.g., o-ACC, an ordinal version of ACC:

• ACC amounts to solving for p the system of linear equations q = Mp, where
q ∈ Rn are the prevalence estimates obtained via CC and M is the
misclassification matrix.

• Least-squares solutions to this system are found by computing

argminp∥q−Mp∥22

• A regularization term is introduced that penalizes non-smooth solutions

argminp∥q−Mp∥22 +
τ

2
(Cp )2 (3)

where the Tikhonov matrix C is such that

1

2
(Cp )2 =

1

2

n−1∑
i=2

(−[p]i−1 + 2[p]i − [p]i+1)
2 (4)

Mirko Bunse, Alejandro Moreo, Fabrizio Sebastiani, Martin Senz: Ordinal Quantification Through Regularization. ECML/PKDD (5) 2022: 36-52
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Open challenges for quantification

• Quantification has not received the same attention as classification; therefore,
many open problems still remain; there is a need, e.g., to

1 Investigate non-aggregative quantification methods more extensively, since
they are the true realization of “Vapnik’s principle”

2 Investigate transductive quantification methods, to take advantage of the fact
that transductive contexts are “easier”

3 Devise methods for exploiting the full potential of deep learning for
quantification

4 Better investigate the relationships between quantification and types of
dataset shift other than PPS
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Conclusion

• Growing awareness that quantification is going to be more and more
important; given the advent of big data, application contexts will spring up in
which we will simply be happy with analysing data at the aggregate (rather
than at the individual) level

• Takeaway message to users of supervised learning: when
• You are using classification
• Your only goal is to obtain aggregate results, i.e., class prevalence estimates

your work would probably benefit from using quantification technology
instead of classification technology
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Thank you!

Questions?
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