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Problem statement

Given: a labeled training set D = {(xi, yi) ∈ X × Y}n
i=1 ∼ Pn where

• X is the feature space (e.g., X = Rd)

• Y = {1, 2, . . . C} is the set of class labels

Find: a quantifier λ :
⋃∞

m=1 X
m → ∆C−1 where

•
⋃∞

m=1 X
m is the space of unlabeled data bags of any size m

• ∆C−1 =
{

p ∈ RC : pi ≥ 0 ∀i,
∑C

i=1 pi = 1
}

is the space of class prevalences

• for any bag B ∼ Qm, we want to achieve that λ(B) = Q(Y )

unlabeled bag

X1

X2 →
λ

class prior

Y

Q(Y )
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Prior probability shift

We typically want to achieve λ(B) = Q(Y ) when otherwise unknown

Definitions:

• ∀ x ∈ B : x ∼ Q(x) where Q(x) =
∑C

y=1 Q(x, y) (law of total probability)

• ∀ (x, y) ∈ D : (x, y) ∼ P(x, y)

Identically & independently distributed (IID) data:

• Q(X, Y ) = P(X, Y )

• we could estimate Q(Y ) = P(Y )

Prior probability shift (PPS):

• Q(X | Y ) = P(X | Y )

• Q(Y ) 6= P(Y )

More types of data set shift exist.1
typical assumption in quantification

1 Kull and Flach, “Patterns of dataset shift”, 2014.
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Prior probability shift

X

P

training data: P(Y ) = ( 1
2 , 1

2 )

X

Q

testing bag: Q(Y ) = ( 1
4 , 3

4 )

Q(X | Y = 1) = P(X | Y = 1)
Q(X | Y = 2) = P(X | Y = 2)
Q(X, Y ) or P(X, Y )
Bayes-optimal classifier for P
Bayes-optimal classifier for Q

We cannot learn a classifier (solely) from P that is also optimal for Q.
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Classification versus quantification

For both tasks, we are given D = {(xi, yi) ∈ X × Y}n
i=1

Classification:

• find h : X → Y

• reason about individual data items

• (typically) assume IID data

Quantification:

• find λ :
⋃∞

m=1 X
m → ∆C−1

• reason about bags of data

• (typically) assume PPS

PPS requires quantifiers that are more sophisticated than Classify & Count.2

2 Forman, “Quantifying counts and costs via classification”, 2008.
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2. Desirable properties of quantifiers
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Fisher consistency

Definition (Fisher consistency for PPS):

If a quantifier had access to the entire population, it would return the correct class prevalences:

λ′
(
Q(X)

)︸ ︷︷ ︸
population
analogue
of λ(B)

= Q(Y ) ∀ Q : Q(X | Y ) = P(X | Y )︸ ︷︷ ︸
for any Q with PPS

Notes:

• can also be defined for other types of data set shift

• is different from unbiasedness and different from asymptotical consistency

• does not indicate good performance on finite samples

• hence, not a sufficient but certainly a necessary criterion for quantifier selection

Tip: write down this definition; there might be a small assignment!
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Estimation error

Since data is limited, we cannot solely rely on Fisher consistency.

Empirical evaluation: test quantifiers on data

• employ suitable protocols (as discussed the previous part of this tutorial)

• employ a representative collection of data sets

Asymptotical consistency: look for desirable asymptotical behaviour; with any bound of the type

‖λ(B)− p∗‖ ≤ f
(

λ, |D|, |B|, δ
)

prefer those quantifiers λ that achieve a small upper bound with a high probability 1− δ
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Resource efficiency

User perspective:

• little waiting times for predictions

• without requiring excessive hardware

Environmental perspective:

• greenhouse gas emissions: use little computation and green energy

• Google:3 “reducing emissions may be challenging due to increasing energy demands from the greater

intensity of AI compute.”

(their emissions increased by 48%, as compared to 2019, despite their goal of reducing emissions by 50% in 2030)

Implications on quantification research:

• reduce resource consumption

• report on resource consumption (prediction times, memory consumption, GHG emissions, …)

3 Google, Environmental Report, 2024.

M. Bunse, A. Moreo, F. Sebastiani Supervised methods for quantification 8



Resource efficiency

User perspective:

• little waiting times for predictions

• without requiring excessive hardware

Environmental perspective:

• greenhouse gas emissions: use little computation and green energy

• Google:3 “reducing emissions may be challenging due to increasing energy demands from the greater

intensity of AI compute.”

(their emissions increased by 48%, as compared to 2019, despite their goal of reducing emissions by 50% in 2030)

Implications on quantification research:

• reduce resource consumption

• report on resource consumption (prediction times, memory consumption, GHG emissions, …)

3 Google, Environmental Report, 2024.

M. Bunse, A. Moreo, F. Sebastiani Supervised methods for quantification 8



Resource efficiency

User perspective:

• little waiting times for predictions

• without requiring excessive hardware

Environmental perspective:

• greenhouse gas emissions: use little computation and green energy

• Google:3 “reducing emissions may be challenging due to increasing energy demands from the greater

intensity of AI compute.”

(their emissions increased by 48%, as compared to 2019, despite their goal of reducing emissions by 50% in 2030)

Implications on quantification research:

• reduce resource consumption

• report on resource consumption (prediction times, memory consumption, GHG emissions, …)

3 Google, Environmental Report, 2024.

M. Bunse, A. Moreo, F. Sebastiani Supervised methods for quantification 8



1. Problem statement

2. Desirable properties of quantifiers

3. Binary quantifiers

4. Multi-class quantifiers

5. Numerical optimization

6. Loss functions & data representations

7. Beyond linear systems of equations



Binary Adjusted Classify & Count

Preliminaries:

• let Y = {1, 2} (binary quantification)

• assume a classifier h : X → Y

⇒ Q(h(X) = 1) =
∑
i∈Y

Q(h(X) = 1 | Y = i) · Q(Y = i) (law of total probability)

= TPR︸ ︷︷ ︸
Q(h(X) = 1 | Y = 1)

· Q(Y = 1) + FPR︸ ︷︷ ︸
Q(h(X) = 1 | Y = 2)

· (1− Q(Y = 1))

⇒ Q(Y = 1) =
Q(h(X) = 1)− FPR

TPR − FPR

where:

• Q(h(X) = 1) can be estimated by counting the predictions h(x) ∀ x ∈ B
• TPR and FPR can be estimated with the training data D (due to PPS)
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Binary Adjusted Classify & Count

Definition (binary ACC):

Q̂(Y = 1) =
Q̂(h(X) = 1)− ˆFPR

ˆTPR − ˆFPR
is Fisher-consistent,4 where

• Q̂(h(X) = 1) = 1
|B|

∑
x∈B 1h(x)=1

• ˆTPR = 1
|D1|

∑
x∈D1

1h(x)=1

• ˆFPR = 1
|D2|

∑
x∈D2

1h(x)=1

• Di = {(x, y) ∈ D : y = i} ∀ i ∈ Y

Definition (binary probabilistic ACC / PACC):

Replace each occurence of 1h(x)=1 with the soft classification s(x) ∈ [0, 1]

Problem: Q̂(Y = 1) might be undefined or outside of [0, 1]

4 Tasche, “Fisher consistency for prior probability shift”, 2017.
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Counter example: Classify & Count

Assignment [2 min]:

What would happen if we simply returned Q̂(h(X) = 1) as our estimate of Q̂(Y = 1) ?

Answer: on the population level, we would obtain

h
(
Q(X)

)
= Q(h(X) = 1)

= TPR · Q(Y = 1) + FPR · (1− Q(Y = 1))

6= Q(Y = 1)

if TPR 6= 1 or if FPR 6= 0.

Hence, CC is not Fisher-consistent under PPS.
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Example: from binary to multi-class (P)ACC

Preliminaries:

• let Y = {1, 2, . . . C}

• assume a classifier h : X → Y

⇒ Q(h(X) = i) =
∑
j∈Y

Q(h(X) = i | Y = j) · Q(Y = j) ∀ i ∈ Y (just like before)

= M>
i p

where

Mi =


Q(h(X) = i | Y = 1)
Q(h(X) = i | Y = 2)

.

.

.

Q(h(X) = i | Y = C)

 p =


Q(Y = 1)
Q(Y = 2)

.

.

.

Q(Y = C)



M =


M>

1
M>

2
.
.
.

M>
C

 q =


Q(h(X) = 1)
Q(h(X) = 2)

.

.

.

Q(h(X) = C)


>

such that q = Mp
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Example: from binary to multi-class (P)ACC

Synopsis:

• we have just seen how multi-class ACC and PACC yield systems of equations

• we have also seen how binary ACC and PACC differ in their computation of ˆTPR, ˆFPR, and

Q̂(h(X) = 1)

e.g., Q̂(h(X) = 1) =

{
1

|B|
∑

x∈B 1h(x)=1 (ACC)

1
|B|

∑
x∈B s(x) (PACC)

(they represent the data differently, either through h(x) or s(x) )

• we have not yet discussed how q = Mp can be solved

Next steps [30 min]:

• generalize these concepts towards arbitrary data representations [10 min]

• discuss ways of solving q = Mp

• define concrete representations (in addition to those of ACC and PACC)
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General systems of linear equations

More generally: any data representation Φ : X → Z yields another system of equations q = Mp via

Q(Φ(X) = z) =
∑
i∈Y

Q(Φ(X) = z | Y = i) · Q(Y = i) ∀ z ∈ Z

and any of these systems can suit the purpose of finding p.

The solution of the system q = Mp

• is Fisher-consistent by construction

• is asymptotically consistent:5

∥∥λ(B)−p∗
∥∥

2
≤

2k(2 +
√

2 log 2C
δ

)√
λ2︸ ︷︷ ︸

representation Φ

( ‖ p∗

ptrn
‖2√
|D|︸ ︷︷ ︸

shift & volume

+
1√
|B|︸ ︷︷ ︸

volume

)
where


k constant s.t. ‖Φ(x)‖2 ≤ k ∀ x ∈ X
λ2 second-smallest eigenvalue of G
δ desired probability

5 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023.
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Counter example: one-vs-rest quantification

Can we not just use binary (P)ACC with for each binary task in an OVR decomposition?

Q̂(Y = i) =
Q̂(h(X) = 1)− ˆFPRi

ˆTPRi − ˆFPRi

∀ i ∈ Y

Assignment [2 min]: What is the problem in the following situation?

X

P

training: P(Y ) = ( 1
3 , 1

3 , 1
3 )

X

Q

testing: Q(Y ) = ( 5
11 , 5

11 , 1
11 )

Q(X | Y = 1)
Q(X | Y = 2)
Q(X | Y = 3)
Q(X | Y ∈ {2, 3})

• PPS among C > 2 classes leads to concept shift in OVR decompositions6,7

• hence, OVR quantification with Fisher-consistent binary quantifiers is not Fisher-consistent

6 Gövert, “Fisher-Konsistenz für Quantification-Algorithmen”, 2023, supervised by M. Bunse and S. Mücke.
7 Donyavi, Serapião, and Batista, “MC-SQ: A Highly Accurate Ensemble for Multi-class Quantification”, 2023.
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training: P(Y ) = ( 1
3 , 1

3 , 1
3 )

X

Q

testing: Q(Y ) = ( 5
11 , 5

11 , 1
11 )

Q(X | Y = 1)
Q(X | Y = 2)
Q(X | Y = 3)
Q(X | Y ∈ {2, 3})

• PPS among C > 2 classes leads to concept shift in OVR decompositions6,7

• hence, OVR quantification with Fisher-consistent binary quantifiers is not Fisher-consistent

6 Gövert, “Fisher-Konsistenz für Quantification-Algorithmen”, 2023, supervised by M. Bunse and S. Mücke.
7 Donyavi, Serapião, and Batista, “MC-SQ: A Highly Accurate Ensemble for Multi-class Quantification”, 2023.
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Synopsis

We learned how to achieve Fisher consistency:

• define some data representation Φ : X → Z

• solve q = Mp

Next steps:

• discuss ways of solving q = Mp

• define concrete representations Φ (in addition to those of ACC and PACC)

M. Bunse, A. Moreo, F. Sebastiani Supervised methods for quantification 18
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Matrix inversion

Goal: solve q = Mp

• in other words, find p, given q and M

• q and M are fully defined through Φ, B, and D

Naive solution: choose p̂ = M−1q

• the inverse M−1 is not guaranteed to exist (M might not even be square)

• if M−1 exists, p̂ is not guaranteed to be in ∆C−1 (an ad-hoc projection is necessary)

Naive improvement: choose p̂ = M†q with the Moore-Penrose pseudo-inverse M†

• M† always exists and p̂ is a unique solution

• however, p̂ is still not guaranteed to be in ∆C−1

• p̂ is a minimum-norm least-squares solution8 (while a minimum norm does not relate to quantification)

8 Mueller and Siltanen, Linear and Nonlinear Inverse Problems with Practical Applications, 2012.
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Constrained optimization

Proper solution: constrain p̂ to always be in ∆C−1, i.e.,

p̂ = arg min
p∈∆C−1

`(q, Mp)

where ` : Z × Z → R is a loss function, e.g., choose

`(q, Mp) =
∥∥q −Mp

∥∥2
2

(least squares)

Remarks:

• we will soon learn about other loss functions

• a straightforward implementation requires constrained optimization algorithms
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Implicit constraints

Can we use unconstrained optimization algorithms?

Yes:9 use the soft-max operator σ : RC−1 → ∆C−1 and optimize over log-odds l ∈ RC−1, i.e.,

p̂ = σ(l∗)

l∗ = arg min
l∈RC−1

`
(

q, Mσ(l)
)

[
σ(l)

]
i

=


1

1+
∑C−1

j=1
exp(lj )

if i = 1

exp(li−1)

1+
∑C−1

j=1
exp(lj )

∀ i ∈ {2, 3, . . . C}

9 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022.

M. Bunse, A. Moreo, F. Sebastiani Supervised methods for quantification 22



Implicit constraints

Can we use unconstrained optimization algorithms?

Yes:9 use the soft-max operator σ : RC−1 → ∆C−1 and optimize over log-odds l ∈ RC−1, i.e.,

p̂ = σ(l∗)

l∗ = arg min
l∈RC−1

`
(

q, Mσ(l)
)

[
σ(l)

]
i

=


1

1+
∑C−1

j=1
exp(lj )

if i = 1

exp(li−1)

1+
∑C−1

j=1
exp(lj )

∀ i ∈ {2, 3, . . . C}

9 Bunse, “On Multi-Class Extensions of Adjusted Classify and Count”, 2022.

M. Bunse, A. Moreo, F. Sebastiani Supervised methods for quantification 22



Synopsis

Components of a quantification algorithm:

• a data representation Φ : X → Z

• a loss function ` : Z × Z → R

• an optimization algorithm (matrix inversion does not suffice!)

Next steps:

• define concrete choices of Φ and ` (in addition to those of ACC and PACC)

• discuss algorithms beyond solutions of q = Mp
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(Probabilistic) Adjusted Classify & Count

Loss function:

`(q, Mp) =
∥∥q −Mp

∥∥2
2

(least squares)

Representation:10,11

Φ(x) =

1h(x) ∈ {0, 1}C ACC (a one-hot encoding of h(x))

s(x) ∈ ∆C−1 PACC

where

• h : X → Y a “hard” classifier such that h(x) = ŷ

• s : X → ∆C−1 a “soft” classifier such that s(x) ≈ P(Y | x)

10 Firat, “Unified Framework for Quantification”, 2016.
11 Bunse, “Unification of Algorithms for Quantification and Unfolding”, 2022.
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Distribution matching: HDx and HDy

Loss function:

`(q, Mp) =
1
d

d∑
i=1

HD(qi•, Mi••p) where HD(a, b) =

√√√√ b∑
i

(√
ai −

√
bi

)2

Representation:

Φ(x) =


(
1b1(x1),1b2(x2), . . .1bd(xd)

)
∈ {0, 1}Bd HDx(

1b1([s(x)]1),1b2([s(x)]2), . . .1bd([s(x)]d)
)
∈ {0, 1}BC HDy

where bi : R→ {1, 2, . . . B} is a binning of the i-th feature (or class probability)

Problem: HD is not twice differentiable ⇒ prefer HD2 instead.12

12 Bunse, “qunfold: Composable Quantification and Unfolding Methods in Python”, 2023.
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Kernel mean matching: EDx, EDy, and others

Representation:

[Φ(x)]i =
1
|Di|

∑
x′∈Di

K(x, x′)

where K : X × X → R is some kernel between data items, e.g.,

• ‖x− x′‖2 (Euclidean distance; EDx13)

•
∑C−1

i=1

∣∣∣∑i

j=1[s(x)]j − [s(x′)]j
∣∣∣ (Earth Mover’s Distance; EDy14)

• exp
( −‖x−x′‖2

(2σ)2

)
(Gaussian kernel)

Problem: a high computational cost ⇒ use a random Fourier approximation15

Loss function (EDx and EDy): `(q, Mp) = 2pT q − p>Mp (any other loss is possible)

13 Kawakubo, Plessis, and Sugiyama, “Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance”,

2016.
14 Castaño et al., “Matching Distributions Algorithms Based on the Earth Mover’s Distance for Ordinal Quantification”, 2022.
15 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023.
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Regularization

So far, we’ve been very concerned about consistency. But what if

• the data volume is small?

• we’ve strong assumptions about how the predictions should look like?

Regularization:

`′(q, Mp) = `(q, Mp) + τ · r(p)

• τ ≥ 0 is the regularization impact (i.e., a hyper-parameter that needs to be optimized)

• r : ∆C−1 → R is a regularization term that penalizes any deviation from our assumptions

Tikhonov regularization:16

r(p) =
1
2

(Cp)2 =


1
2

∑C−1
i=2 (−pi−1 + 2pi − pi+1)2 ordinal quantification

1
2

∑C−1
i=1 (pi − pi+1)2 deviation from pi = 1

C

16 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.
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Synopsis

Many quantification algorithms are combinations of:

• a data representation Φ : X → Z

• a loss function ` : Z × Z → R

• an optimization algorithm

We have still omitted many methods from this family (ReadMe, PDF, unfolding methods, …)

We can alter these algorithms by:

• re-combining their Φ and `

• approximating their representations

• adding regularization

Next step: discuss algorithms beyond solutions of q = Mp
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Expectation maximization

Preliminaries:

Q(x | y) Bayes=
Q(y | x) · Q(x)

Q(y)
PPS= P(x | y) Bayes=

P(y | x) · P(x)
P(y)

∀ (x, y) ∈ X × Y

⇒ Q(y | x) =
Q(y)
P(y) · P(y | x)∑

y′∈Y
Q(y′)
P(y′) · P(y′ | x)

(the original purpose of this method)

SLD / EMQ:17 repeat the E-step and the M-step until convergence.

Initialize: p(0) ← P̂(Y )
Q̂(0)(y | x) ← P̂(y | x) ∀ y ∈ Y, x ∈ B

E-step: [p(k)]i ← 1
|B|

∑
x∈B Q̂(k−1)(Y = i | x)

M-step: Q̂(k)(y | x) ←
[p(k)]y

P̂(y)
·P̂(y|x)∑

y′∈Y

[p(k)]
y′

P̂(y′)
·P̂(y′|x)

∀ y ∈ Y, x ∈ B

17 Saerens, Latinne, and Decaestecker, “Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure”, 2002.
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Expectation maximization

Properties: SLD / EMQ is…

• Fisher consistent18

• equivalent to the maximum likelihood quantifier19 (which is to be presented next)

• and it maintains per-example contributions Q̂(Y = i | x)

18 Tasche, “Fisher consistency for prior probability shift”, 2017.
19 Alexandari, Kundaje, and Shrikumar, “Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation”, 2020.
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Maximum likelihood

Likelihood principle:

L(p | B) = Q(B | p)

=
∏

x∈B Q(x | p)

PPS=
∏

x∈B

∑
y∈Y P(x | y) · py

⇒ − logL(p | B) = −
∑

x∈B log
∑

y∈Y P(x | y) · py

∝ −
∑

x∈B log
∑

y∈Y
P(y|x)
P(y) · py

Therefore, choose p̂ = arg minp∈∆C−1 −
∑

x∈B log
∑

y∈Y
P̂(y|x)
P̂(y)

· py
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Continuous representations

KDEy:20 represent all probabilities through kernel density estimates (KDEs), i.e.,

Q̂(x) =
1
|B|

∑
x′∈B

K(s(x), s(x′)) and Q̂(x | y) =
1
|Dy |

∑
x′∈Dy

K(s(x), s(x′)) ∀ x ∈ X

where K : X × X → R is a kernel function (e.g., a Gaussian kernel with some bandwidth)

Remark: this is different from KMM, where [Φ(x)]i = 1
|Di|

∑
x′∈Di

K(s(x), s(x′)) ∀ x ∈ D ∪ B

Optimization task: is determined by the choice of loss function.

• Losses with closed-form solutions lead to specific tasks (e.g., Cauchy-Schwarz)

• Negative log-likelihood leads to the maximum likelihood estimator (with a KDE representation)

• MC-sampled losses lead to q = Mp tasks

20 Moreo, González, and Coz, “Kernel Density Estimation for Multiclass Quantification”, 2024.
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Optimization task: is determined by the choice of loss function.

• Losses with closed-form solutions lead to specific tasks (e.g., Cauchy-Schwarz)

• Negative log-likelihood leads to the maximum likelihood estimator (with a KDE representation)

• MC-sampled losses lead to q = Mp tasks

20 Moreo, González, and Coz, “Kernel Density Estimation for Multiclass Quantification”, 2024.
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Symmetric learning

So far, we have assumed a training set D = {(xi, yi) ∈ X × Y}n
i=1, but what if we have

D′ =
{

(Bi, pi) ∈ ∪∞
m=1X

m ×∆C−1
}n

i=1

Requirements: the representations of the Bi need to be…

• variable-size

• permutation-invariant

HistNetQ:21

`(θ) =
1
|D′|

∑
(B, p)∈D′

RAE(λθ(B), p)

where λθ a neural network with a differentiable histogram layer

21 Pérez-Mon et al., “Quantification using Permutation-Invariant Networks based on Histograms”, 2024.
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Ensembling

Idea: compute a central tendency (mean, median) of multiple predictions.

• multiple classifiers within different quantifiers (MC-MQ) or within duplicates of the same (MC-SQ)22

• for each member, use all data or use different subsamples23

• maintain all members, select a subset at training time, or select a subset at prediction time24

• concatenate Φ(x) =
(

Φ1(x), Φ2(x), . . . ΦE(x)
)
and minimize the loss once25

Open issue: under which circumstances are ensembles provably better than single models?

22 Donyavi, Serapião, and Batista, “MC-SQ and MC-MQ: Ensembles for Multi-class Quantification”, 2024.
23 Pérez-Gállego, Quevedo, and Coz, “Using ensembles for problems with characterizable changes in data distribution: A case study on quan-

tification”, 2017.
24 Pérez-Gállego et al., “Dynamic ensemble selection for quantification tasks”, 2019.
25 Janssen, “Ensembles für Quantification durch Konkatenieren von Quantifier-Modellen”, 2024, supervised by M. Bunse and S. Buschjäger.
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Conclusion: supervised methods for quantification

Goal: under PPS, find a quantifier λ : ∪∞
m=1X

m → ∆C−1 that is

• Fisher-consistent

• has low estimation error // what about other settings than PPS?

Linear systems of equations: most algorithms can be expressed as solutions of some q = Mp

• choose a data representation Φ : X → Z // what makes a good Φ?

• choose a loss function ` : Z × Z → R // what makes a good `?

• choose an optimization algorithm (constrained or soft-max)

Notable other methods:

• SLD / EMQ

• maximum likelihood // can we bound its error?

• continuous representations

• symmetric learning

• ensembles // are they provably better?
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experimental physics



Example: astro-particle physics

object under study

Earth

charged particles

gamma rays
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Example: astro-particle physics

27 Fig: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023



Advanced topics for experimental physics

Issues to be resolved:

• ordinality: yi ≺ yi+1 ∀ i ∈ Y (to be covered through regularization for ordinal plausibility28)

• background: Q(x) = Q(x,∅) +
∑C

y=1 Q(x, y) (PPS with a noise class29)

• class-conditional selection bias: Q(x ∈ B | yi) 6= Q(x ∈ B | yj) ∃ i 6= j

• changing environment: Q(x, y) =
∑

e∈E Q(x, y, e)

• concept shift: Q(x | y) 6= P(x | y) (in addition to PPS)

• inspect contributions of individual data items x ∈ B to λ(B) (data selection, human in the loop)

28 Bunse et al., “Regularization-based Methods for Ordinal Quantification”, 2024.
29 Dussap, Blanchard, and Chérief-Abdellatif, “Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching”, 2023.
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