

Supervised methods for quantification

Mirko Bunse, Alejandro Moreo, and Fabrizio Sebastiani LQ @ ECML-PKDD 2024 – September 13th

Partner institutions:

Institutionally funded by:

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfaler

Problem statement

Given: a labeled training set $D = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n \sim \mathbb{P}^n$ where

- \mathcal{X} is the feature space (e.g., $\mathcal{X} = \mathbb{R}^d$)
- $\mathcal{Y} = \{1, 2, \dots C\}$ is the set of class labels

Problem statement

Given: a labeled training set $D = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n \sim \mathbb{P}^n$ where

- \mathcal{X} is the feature space (e.g., $\mathcal{X} = \mathbb{R}^d$)
- $\mathcal{Y} = \{1, 2, \dots C\}$ is the set of class labels

Find: a quantifier $\lambda: \bigcup_{m=1}^\infty \mathcal{X}^m \to \Delta^{C-1}$ where

- + $\bigcup_{m=1}^\infty \mathcal{X}^m$ is the space of unlabeled data bags of any size m
- $\Delta^{C-1} = \left\{ \mathbf{p} \in \mathbb{R}^C \, : \, \mathbf{p}_i \geq 0 \, \forall i, \, \sum_{i=1}^C \mathbf{p}_i = 1 \right\}$ is the space of class prevalences

- for any bag $\operatorname{B} \sim \mathbb{Q}^m$, we want to achieve that $\lambda(\operatorname{B}) = \mathbb{Q}(Y)$

We typically want to achieve $\lambda(\mathbf{B}) = \mathbb{Q}(Y)$ when otherwise unknown

Definitions:

- $\forall \ \mathbf{x} \in \mathrm{B} \ : \ \mathbf{x} \ \sim \ \mathbb{Q}(\mathbf{x}) \$ where $\ \mathbb{Q}(\mathbf{x}) \ = \ \sum_{y=1}^C \mathbb{Q}(\mathbf{x},y)$ (law of total probability)
- $\forall (\mathbf{x}, y) \in \mathbf{D} : (\mathbf{x}, y) \sim \mathbb{P}(\mathbf{x}, y)$

¹ Kull and Flach, "Patterns of dataset shift", 2014.

We typically want to achieve $\lambda(\mathbf{B}) = \mathbb{Q}(Y)$ when otherwise unknown

Definitions:

- $\forall \ \mathbf{x} \in \mathrm{B} \ : \ \mathbf{x} \ \sim \ \mathbb{Q}(\mathbf{x}) \$ where $\ \mathbb{Q}(\mathbf{x}) \ = \ \sum_{y=1}^C \mathbb{Q}(\mathbf{x},y)$ (law of total probability)
- $\forall (\mathbf{x}, y) \in \mathbf{D} : (\mathbf{x}, y) \sim \mathbb{P}(\mathbf{x}, y)$

Identically & independently distributed (IID) data:

- $\mathbb{Q}(X,Y) = \mathbb{P}(X,Y)$
- we could estimate $\mathbb{Q}(Y) = \mathbb{P}(Y)$

¹ Kull and Flach, "Patterns of dataset shift", 2014.

We typically want to achieve $\lambda(\mathbf{B}) = \mathbb{Q}(Y)$ when otherwise unknown

Definitions:

- $\forall \ \mathbf{x} \in \mathrm{B} \ : \ \mathbf{x} \ \sim \ \mathbb{Q}(\mathbf{x}) \$ where $\ \mathbb{Q}(\mathbf{x}) \ = \ \sum_{y=1}^C \mathbb{Q}(\mathbf{x},y)$ (law of total probability)
- $\forall (\mathbf{x}, y) \in \mathbf{D} : (\mathbf{x}, y) \sim \mathbb{P}(\mathbf{x}, y)$

Identically & independently distributed (IID) data:

- $\mathbb{Q}(X,Y) = \mathbb{P}(X,Y)$
- we could estimate $\mathbb{Q}(Y) = \mathbb{P}(Y)$

Prior probability shift (PPS):

- $\mathbb{Q}(X \mid Y) = \mathbb{P}(X \mid Y)$
- $\mathbb{Q}(Y) \neq \mathbb{P}(Y)$

typical assumption in quantification

More types of data set shift exist.¹

¹ Kull and Flach, "Patterns of dataset shift", 2014.

We cannot learn a classifier (solely) from $\mathbb P$ that is also optimal for $\mathbb Q$.

Classification versus quantification

For both tasks, we are given $D = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n$

Classification:

- find $h : \mathcal{X} \to \mathcal{Y}$
- reason about individual data items
- (typically) assume IID data

Quantification:

- find $\lambda: \bigcup_{m=1}^\infty \mathcal{X}^m \to \Delta^{C-1}$
- reason about bags of data
- (typically) assume PPS

PPS requires quantifiers that are more sophisticated than Classify & Count.²

² Forman, "Quantifying counts and costs via classification", 2008.

1. Problem statement

2. Desirable properties of quantifiers

- 3. Binary quantifiers
- 4. Multi-class quantifiers
- 5. Numerical optimization
- 6. Loss functions & data representations
- 7. Beyond linear systems of equations

Fisher consistency

Definition (Fisher consistency for PPS):

If a quantifier had access to the entire population, it would return the correct class prevalences:

Fisher consistency

Definition (Fisher consistency for PPS):

If a quantifier had access to the entire population, it would return the correct class prevalences:

Notes:

- can also be defined for other types of data set shift
- is different from unbiasedness and different from asymptotical consistency
- does not indicate good performance on finite samples
- hence, not a sufficient but certainly a necessary criterion for quantifier selection

Tip: write down this definition; there might be a small assignment!

Estimation error

Since data is limited, we cannot solely rely on Fisher consistency.

Empirical evaluation: test quantifiers on data

- employ suitable protocols (as discussed the previous part of this tutorial)
- employ a representative collection of data sets

Estimation error

Since data is limited, we cannot solely rely on Fisher consistency.

Empirical evaluation: test quantifiers on data

- employ suitable protocols (as discussed the previous part of this tutorial)
- employ a representative collection of data sets

Asymptotical consistency: look for desirable asymptotical behaviour; with any bound of the type

$$\|\lambda(\mathbf{B}) - \mathbf{p}^*\| \leq f(\lambda, |\mathbf{D}|, |\mathbf{B}|, \delta)$$

prefer those quantifiers λ that achieve a small upper bound with a high probability $1-\delta$

Resource efficiency

User perspective:

- · little waiting times for predictions
- without requiring excessive hardware

Resource efficiency

User perspective:

- · little waiting times for predictions
- without requiring excessive hardware

Environmental perspective:

- greenhouse gas emissions: use little computation and green energy
- Google:³ "reducing emissions may be challenging due to increasing energy demands from the greater intensity of AI compute."

(their emissions increased by 48%, as compared to 2019, despite their goal of reducing emissions by 50% in 2030)

³ Google, Environmental Report, 2024.

Resource efficiency

User perspective:

- · little waiting times for predictions
- without requiring excessive hardware

Environmental perspective:

- greenhouse gas emissions: use little computation and green energy
- Google:³ "reducing emissions may be challenging due to increasing energy demands from the greater intensity of AI compute."

(their emissions increased by 48%, as compared to 2019, despite their goal of reducing emissions by 50% in 2030)

Implications on quantification research:

- reduce resource consumption
- report on resource consumption (prediction times, memory consumption, GHG emissions, ...)

³ Google, Environmental Report, 2024.

- 1. Problem statement
- 2. Desirable properties of quantifiers

3. Binary quantifiers

- 4. Multi-class quantifiers
- 5. Numerical optimization
- 6. Loss functions & data representations
- 7. Beyond linear systems of equations

Preliminaries:

- let $\mathcal{Y}=\{1,2\}$ (binary quantification)
- assume a classifier $h:\mathcal{X} \to \mathcal{Y}$

Preliminaries:

- let $\mathcal{Y}=\{1,2\}$ (binary quantification)
- assume a classifier $h:\mathcal{X} \to \mathcal{Y}$

$$\Rightarrow \quad \mathbb{Q}(h(X)=1) \; = \; \sum_{i \in \mathcal{Y}} \mathbb{Q}(h(X)=1 \mid Y=i) \cdot \mathbb{Q}(Y=i) \quad \text{(law of total probability)}$$

Preliminaries:

- let $\mathcal{Y}=\{1,2\}$ (binary quantification)
- assume a classifier $h:\mathcal{X} \to \mathcal{Y}$

$$\Rightarrow \quad \mathbb{Q}(h(X) = 1) = \sum_{i \in \mathcal{Y}} \mathbb{Q}(h(X) = 1 \mid Y = i) \cdot \mathbb{Q}(Y = i) \quad \text{(law of total probability)}$$
$$= \underbrace{\text{TPR}}_{\mathbb{Q}(h(X) = 1 \mid Y = 1)} \cdot \underbrace{\mathbb{Q}(h(X) = 1 \mid Y = 2)}_{\mathbb{Q}(h(X) = 1 \mid Y = 1)} \cdot \underbrace{\mathbb{Q}(h(X) = 1 \mid Y = 2)}_{\mathbb{Q}(h(X) = 1 \mid Y = 2)}$$

Preliminaries:

- let $\mathcal{Y} = \{1,2\}$ (binary quantification)
- assume a classifier $h: \mathcal{X} \to \mathcal{Y}$

$$\Rightarrow \quad \mathbb{Q}(h(X) = 1) = \sum_{i \in \mathcal{Y}} \mathbb{Q}(h(X) = 1 \mid Y = i) \cdot \mathbb{Q}(Y = i) \quad \text{(law of total probability)}$$

$$= \underbrace{\text{TPR}}_{\mathbb{Q}(h(X) = 1 \mid Y = 1)} \cdot \mathbb{Q}(Y = 1) + \underbrace{\text{FPR}}_{\mathbb{Q}(h(X) = 1 \mid Y = 2)} \cdot (1 - \mathbb{Q}(Y = 1))$$

$$= \underbrace{\mathbb{Q}(h(X) = 1 \mid Y = 1)}_{\mathbb{Q}(h(X) = 1) - \text{FPR}} = \underbrace{\mathbb{Q}(Y = 1)}_{\text{TPR} - \text{TPR}} = \underbrace{\mathbb{Q}(Y = 1)}_{\text{$$

where:

- + $\mathbb{Q}(h(X)=1)$ can be estimated by counting the predictions $h(\mathbf{x}) ~\forall~ \mathbf{x} \in \mathbf{B}$
- $\mathrm{TPR}\,$ and $\mathrm{FPR}\,$ can be estimated with the training data $\mathrm{D}\,$ (due to PPS)

Definition (binary ACC):

$$\hat{\mathbb{Q}}(Y=1) = \frac{\hat{\mathbb{Q}}(h(X)=1) - F\hat{P}R}{T\hat{P}R - F\hat{P}R}$$

is Fisher-consistent,⁴ where

•
$$\hat{\mathbb{Q}}(h(X) = 1) = \frac{1}{|\mathbf{B}|} \sum_{\mathbf{x} \in \mathbf{B}} \mathbb{1}_{h(\mathbf{x})=1}$$

• TPR =
$$\frac{1}{|D_1|} \sum_{\mathbf{x} \in D_1} \mathbb{1}_{h(\mathbf{x})=1}$$

•
$$\mathbf{FPR} = \frac{1}{|\mathbf{D}_2|} \sum_{\mathbf{x} \in \mathbf{D}_2} \mathbb{1}_{h(\mathbf{x})=1}$$

•
$$\mathbf{D}_i = \{(\mathbf{x}, y) \in \mathbf{D} : y = i\} \ \forall i \in \mathcal{Y}$$

⁴ Tasche, "Fisher consistency for prior probability shift", 2017.

Definition (binary ACC):

$$\hat{\mathbb{Q}}(Y=1) = \frac{\hat{\mathbb{Q}}(h(X)=1) - F\hat{P}R}{T\hat{P}R - F\hat{P}R}$$

is Fisher-consistent,⁴ where

•
$$\hat{\mathbb{Q}}(h(X) = 1) = \frac{1}{|\mathbf{B}|} \sum_{\mathbf{x} \in \mathbf{B}} \mathbb{1}_{h(\mathbf{x})=1}$$

• TPR =
$$\frac{1}{|D_1|} \sum_{\mathbf{x} \in D_1} \mathbb{1}_{h(\mathbf{x})=1}$$

•
$$\hat{\text{FPR}} = \frac{1}{|D_2|} \sum_{\mathbf{x} \in D_2} \mathbb{1}_{h(\mathbf{x})=1}$$

•
$$\mathbf{D}_i = \{(\mathbf{x}, y) \in \mathbf{D} : y = i\} \ \forall i \in \mathcal{Y}$$

Definition (binary probabilistic ACC / PACC):

Replace each occurrence of $\mathbbm{1}_{h(\mathbf{x})=1}$ with the soft classification $s(\mathbf{x}) \in [0,1]$

Problem: $\hat{\mathbb{Q}}(Y=1)$ might be undefined or outside of [0,1]

⁴ Tasche, "Fisher consistency for prior probability shift", 2017.

Assignment [2 min]:

What would happen if we simply returned $\hat{\mathbb{Q}}(h(X)=1)$ as our estimate of $\hat{\mathbb{Q}}(Y=1)$?

Assignment [2 min]:

What would happen if we simply returned $\hat{\mathbb{Q}}(h(X) = 1)$ as our estimate of $\hat{\mathbb{Q}}(Y = 1)$?

Answer: on the population level, we would obtain

$$h(\mathbb{Q}(X)) = \mathbb{Q}(h(X) = 1)$$

Assignment [2 min]:

What would happen if we simply returned $\hat{\mathbb{Q}}(h(X) = 1)$ as our estimate of $\hat{\mathbb{Q}}(Y = 1)$?

Answer: on the population level, we would obtain

$$h(\mathbb{Q}(X)) = \mathbb{Q}(h(X) = 1)$$

= TPR \cdot \Q(Y = 1) + FPR \cdot (1 - \Q(Y = 1))

Assignment [2 min]:

What would happen if we simply returned $\hat{\mathbb{Q}}(h(X)=1)$ as our estimate of $\hat{\mathbb{Q}}(Y=1)$?

Answer: on the population level, we would obtain

1

$$h(\mathbb{Q}(X)) = \mathbb{Q}(h(X) = 1)$$

= TPR \cdot \mathbb{Q}(Y = 1) + FPR \cdot (1 - \mathbb{Q}(Y = 1))
\neq \mathbb{Q}(Y = 1)

if $TPR \neq 1$ or if $FPR \neq 0$.

Hence, CC is **not** Fisher-consistent under PPS.

- 1. Problem statement
- 2. Desirable properties of quantifiers
- 3. Binary quantifiers

4. Multi-class quantifiers

- 5. Numerical optimization
- 6. Loss functions & data representations
- 7. Beyond linear systems of equations

- assume a classifier $\,h:\mathcal{X} ightarrow\mathcal{Y}$

Example: from binary to multi-class (P)ACC

$$\Rightarrow \quad \mathbb{Q}(h(X)=i) \; = \; \sum_{j\in\mathcal{Y}} \mathbb{Q}(h(X)=i \mid Y=j) \cdot \mathbb{Q}(Y=j) \; \; \forall \; i\in\mathcal{Y} \quad \text{(just like before)}$$

Preliminaries:

• let $\mathcal{Y} = \{1, 2, \dots C\}$

where

Preliminaries:

Example: from binary to multi-class (P)ACC

- let $\mathcal{Y} = \{1, 2, \dots C\}$
- assume a classifier $h: \mathcal{X} \to \mathcal{Y}$

$$\Rightarrow \quad \mathbb{Q}(h(X) = i) = \sum_{j \in \mathcal{Y}} \mathbb{Q}(h(X) = i \mid Y = j) \cdot \mathbb{Q}(Y = j) \quad \forall \ i \in \mathcal{Y} \quad \text{(just like before)}$$
$$= \mathbf{M}_i^\top \mathbf{p}$$

$$\mathbf{M}_{i} = \begin{pmatrix} \mathbb{Q}(h(X) = i \mid Y = 1) \\ \mathbb{Q}(h(X) = i \mid Y = 2) \\ \vdots \\ \mathbb{Q}(h(X) = i \mid Y = C) \end{pmatrix} \qquad \mathbf{p} = \begin{pmatrix} \mathbb{Q}(Y = 1) \\ \mathbb{Q}(Y = 2) \\ \vdots \\ \mathbb{Q}(Y = C) \end{pmatrix}$$

M. Bunse, A. Moreo, F. Sebastiani

• assume a classifier $h: \mathcal{X} \to \mathcal{Y}$

$$\Rightarrow \quad \mathbb{Q}(h(X) = i) = \sum_{j \in \mathcal{Y}} \mathbb{Q}(h(X) = i \mid Y = j) \cdot \mathbb{Q}(Y = j) \quad \forall \ i \in \mathcal{Y} \quad \text{(just like before)}$$
$$= \mathbf{M}_i^\top \mathbf{p}$$

where

Preliminaries:

$$\mathbf{M}_{i} = \begin{pmatrix} \mathbb{Q}(h(X) = i \mid Y = 1) \\ \mathbb{Q}(h(X) = i \mid Y = 2) \\ \vdots \\ \mathbb{Q}(h(X) = i \mid Y = C) \end{pmatrix} \qquad \mathbf{p} = \begin{pmatrix} \mathbb{Q}(Y = 1) \\ \mathbb{Q}(Y = 2) \\ \vdots \\ \mathbb{Q}(Y = C) \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} \mathbf{M}_{1}^{\top} \\ \mathbf{M}_{2}^{\top} \\ \vdots \\ \mathbf{M}_{C}^{\top} \end{pmatrix} \qquad \mathbf{q} = \begin{pmatrix} \mathbb{Q}(h(X) = 1) \\ \mathbb{Q}(h(X) = 2) \\ \vdots \\ \mathbb{Q}(h(X) = C) \end{pmatrix}^{\top}$$

such that $\mathbf{q} = \mathbf{M}\mathbf{p}$

Example: from binary to multi-class (P)ACC

-

Example: from binary to multi-class (P)ACC

Synopsis:

- we have just seen how multi-class ACC and PACC yield systems of equations
- we have also seen how binary ACC and PACC differ in their computation of $\,{\rm TPR},{\rm FPR},\,$ and $\hat{\mathbb{Q}}(h(X)=1)$

$$\text{e.g.,} \qquad \hat{\mathbb{Q}}(h(X) = 1) = \begin{cases} \frac{1}{|\mathbf{B}|} \sum_{\mathbf{x} \in \mathbf{B}} \mathbb{1}_{h(\mathbf{x}) = 1} & (\text{ACC}) \\ \frac{1}{|\mathbf{B}|} \sum_{\mathbf{x} \in \mathbf{B}} s(\mathbf{x}) & (\text{PACC}) \end{cases}$$

(they represent the data differently, either through $h(\mathbf{x})$ or $s(\mathbf{x})$)

- we have not yet discussed how $\, {\bf q} = {\bf M} {\bf p} \,$ can be solved

6

Example: from binary to multi-class (P)ACC

Synopsis:

- we have just seen how multi-class ACC and PACC yield systems of equations
- we have also seen how binary ACC and PACC differ in their computation of $\,{\rm TPR},{\rm FPR},\,$ and $\hat{\mathbb{Q}}(h(X)=1)$

e.g.,
$$\hat{\mathbb{Q}}(h(X) = 1) = \begin{cases} \frac{1}{|\mathbf{B}|} \sum_{\mathbf{x} \in \mathbf{B}} \mathbb{1}_{h(\mathbf{x})=1} & (\text{ACC}) \\ \frac{1}{|\mathbf{B}|} \sum_{\mathbf{x} \in \mathbf{B}} s(\mathbf{x}) & (\text{PACC}) \end{cases}$$

(they represent the data differently, either through $h(\mathbf{x})$ or $s(\mathbf{x})$)

- we have not yet discussed how $\, {\bf q} = {\bf M} {\bf p} \,$ can be solved

Next steps [30 min]:

- generalize these concepts towards arbitrary data representations [10 min]
- discuss ways of solving $\, {\bf q} = {\bf M} {\bf p}$
- define concrete representations (in addition to those of ACC and PACC)

General systems of linear equations

More generally: any data representation $\Phi: \mathcal{X} \to \mathcal{Z}$ yields another system of equations $\mathbf{q} = \mathbf{M}\mathbf{p}$ via

$$\mathbb{Q}(\Phi(X)=z) \ = \ \sum_{i\in\mathcal{Y}} \mathbb{Q}(\Phi(X)=z \mid Y=i) \cdot \mathbb{Q}(Y=i) \ \forall \ z\in\mathcal{Z}$$

and any of these systems can suit the purpose of finding $\ \mathbf{p}$.

⁵ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023.

General systems of linear equations

More generally: any data representation $\Phi: \mathcal{X} \to \mathcal{Z}$ yields another system of equations $\mathbf{q} = \mathbf{M}\mathbf{p}$ via

$$\mathbb{Q}(\Phi(X)=z) \ = \ \sum_{i\in\mathcal{Y}} \mathbb{Q}(\Phi(X)=z \mid Y=i) \cdot \mathbb{Q}(Y=i) \ \forall \ z\in\mathcal{Z}$$

and any of these systems can suit the purpose of finding $\ \mathbf{p}$.

The solution of the system $\mathbf{q} = \mathbf{M} \mathbf{p}$

- is Fisher-consistent by construction
- is asymptotically consistent:⁵

$$\left\|\lambda(\mathbf{B})-\mathbf{p}^{*}\right\|_{2} \leq \underbrace{\frac{2k(2+\sqrt{2\log\frac{2C}{\delta}})}{\sqrt{\lambda_{2}}}}_{\text{representation }\Phi} \left(\underbrace{\frac{\|\frac{\mathbf{p}^{*}}{\mathbf{p}_{\mathrm{trn}}}\|_{2}}{\sqrt{|\mathbf{D}|}}}_{\text{shift & volume}} + \underbrace{\frac{1}{\sqrt{|\mathbf{B}|}}}_{\text{volume}}\right) \quad \text{where } \begin{cases} k & \text{constant s.t. } \|\Phi(\mathbf{x})\|_{2} \leq k \,\,\forall \, \mathbf{x} \in \mathcal{X} \\ \lambda_{2} & \text{second-smallest eigenvalue of } \mathbf{G} \\ \delta & \text{desired probability} \end{cases}$$

⁵ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023.

Counter example: one-vs-rest quantification

Can we not just use binary (P)ACC with for each binary task in an OVR decomposition?

$$\hat{\mathbb{Q}}(Y=i) \;=\; \frac{\hat{\mathbb{Q}}(h(X)=1) - \mathbf{F}\hat{\mathbf{P}}\mathbf{R}_i}{\mathbf{T}\hat{\mathbf{P}}\mathbf{R}_i - \mathbf{F}\hat{\mathbf{P}}\mathbf{R}_i} \quad \forall \; i \in \mathcal{Y}$$

⁶ Gövert, "Fisher-Konsistenz für Quantification-Algorithmen", 2023, supervised by M. Bunse and S. Mücke.
 ⁷ Donyavi, Serapião, and Batista, "MC-SQ: A Highly Accurate Ensemble for Multi-class Quantification", 2023.

Counter example: one-vs-rest quantification

Can we not just use binary (P)ACC with for each binary task in an OVR decomposition?

$$\hat{\mathbb{Q}}(Y=i) = \frac{\hat{\mathbb{Q}}(h(X)=1) - \mathbf{F}\hat{\mathbf{P}}\mathbf{R}_i}{\mathbf{T}\hat{\mathbf{P}}\mathbf{R}_i - \mathbf{F}\hat{\mathbf{P}}\mathbf{R}_i} \quad \forall i \in \mathcal{Y}$$

Assignment [2 min]: What is the problem in the following situation?

⁶ Gövert, "Fisher-Konsistenz für Quantification-Algorithmen", 2023, supervised by M. Bunse and S. Mücke.
 ⁷ Donyavi, Serapião, and Batista, "MC-SO: A Highly Accurate Ensemble for Multi-class Quantification", 2023.

Counter example: one-vs-rest quantification

Can we not just use binary (P)ACC with for each binary task in an OVR decomposition?

$$\hat{\mathbb{Q}}(Y=i) = \frac{\hat{\mathbb{Q}}(h(X)=1) - F\hat{P}\hat{R}_i}{T\hat{P}\hat{R}_i - F\hat{P}\hat{R}_i} \quad \forall i \in \mathcal{Y}$$

Assignment [2 min]: What is the problem in the following situation?

training: $\mathbb{P}(Y) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ testing: $\mathbb{Q}(Y) = (\frac{5}{11}, \frac{5}{11}, \frac{1}{11})$ $\mathbb{Q}(X \mid Y = 1)$ $\cdots = \mathbb{Q}(X \mid Y = 2)$ $\cdots = \mathbb{Q}(X \mid Y = 3)$ $\cdots = \mathbb{Q}(X \mid Y \in \{2, 3\})$

- PPS among $C>2\,$ classes leads to concept shift in OVR decompositions 6,7

• hence, OVR quantification with Fisher-consistent binary quantifiers is not Fisher-consistent

⁶ Gövert, "Fisher-Konsistenz für Quantification-Algorithmen", 2023, supervised by M. Bunse and S. Mücke.

⁷ Donyavi, Serapião, and Batista, "MC-SQ: A Highly Accurate Ensemble for Multi-class Quantification", 2023.

Synopsis

We learned how to achieve Fisher consistency:

- define some data representation $\Phi: \mathcal{X} \to \mathcal{Z}$
- solve $\mathbf{q} = \mathbf{M}\mathbf{p}$

Next steps:

- discuss ways of solving $\, {\bf q} = {\bf M} {\bf p}$
- define concrete representations $\,\Phi\,\,$ (in addition to those of ACC and PACC)

- 1. Problem statement
- 2. Desirable properties of quantifiers
- 3. Binary quantifiers
- 4. Multi-class quantifiers

5. Numerical optimization

- 6. Loss functions & data representations
- 7. Beyond linear systems of equations

Matrix inversion

Goal: solve $\mathbf{q} = \mathbf{M}\mathbf{p}$

- in other words, find $\mathbf{p}, \mbox{ given } \mathbf{q} \mbox{ and } \mathbf{M}$
- + ${\bf q}$ and ${\bf M}$ are fully defined through $\Phi,\,B,$ and $\,D$

⁸ Mueller and Siltanen, *Linear and Nonlinear Inverse Problems with Practical Applications*, 2012.

Matrix inversion

Goal: solve $\mathbf{q} = \mathbf{M}\mathbf{p}$

- in other words, find ${\bf p}, \; {\rm given} \; {\bf q} \; {\rm and} \; {\bf M}$
- + ${\bf q}$ and ${\bf M}$ are fully defined through $\Phi,\,B,$ and D

Naive solution: choose $\hat{\mathbf{p}} = \mathbf{M}^{-1}\mathbf{q}$

- the inverse \mathbf{M}^{-1} is not guaranteed to exist (M might not even be square)
- if ${\bf M}^{-1}$ exists, $\hat{\bf p}$ is not guaranteed to be in Δ^{C-1} (an ad-hoc projection is necessary)

⁸ Mueller and Siltanen, *Linear and Nonlinear Inverse Problems with Practical Applications*, 2012.

Matrix inversion

Goal: solve $\mathbf{q} = \mathbf{M}\mathbf{p}$

- in other words, find $\mathbf{p},~\text{given}~\mathbf{q}~\text{and}~\mathbf{M}$
- \mathbf{q} and \mathbf{M} are fully defined through Φ , B, and D

Naive solution: choose $\hat{\mathbf{p}} = \mathbf{M}^{-1}\mathbf{q}$

- the inverse \mathbf{M}^{-1} is not guaranteed to exist (M might not even be square)
- if ${\bf M}^{-1}$ exists, $\hat{{\bf p}}$ is not guaranteed to be in Δ^{C-1} (an ad-hoc projection is necessary)

Naive improvement: choose $\hat{\mathbf{p}}=\mathbf{M}^{\dagger}\mathbf{q}$ with the Moore-Penrose pseudo-inverse \mathbf{M}^{\dagger}

- + $\mathbf{M}^{\dagger}\,$ always exists and $\hat{\mathbf{p}}\,$ is a unique solution
- however, $\hat{\mathbf{p}}$ is still not guaranteed to be in Δ^{C-1}
- $\hat{\mathbf{p}}$ is a minimum-norm least-squares solution⁸ (while a minimum norm does not relate to quantification)

⁸ Mueller and Siltanen, *Linear and Nonlinear Inverse Problems with Practical Applications*, 2012.

Constrained optimization

Proper solution: constrain $\hat{\mathbf{p}}$ to always be in Δ^{C-1} , i.e.,

 $\hat{\mathbf{p}} = \underset{\mathbf{p} \in \Delta^{C-1}}{\operatorname{arg\,min}} \ \ell(\mathbf{q}, \mathbf{M}\mathbf{p})$

where $\,\ell\,:\,\mathcal{Z}\times\mathcal{Z}\rightarrow\mathbb{R}\,$ is a loss function, e.g., choose

$$\ell(\mathbf{q},\mathbf{Mp}) \;=\; \left\|\mathbf{q}-\mathbf{Mp}
ight\|_2^2$$
 (least squares)

Remarks:

- we will soon learn about other loss functions
- a straightforward implementation requires constrained optimization algorithms

Implicit constraints

Can we use **unconstrained** optimization algorithms?

Yes:⁹ use the soft-max operator $\sigma : \mathbb{R}^{C-1} \to \Delta^{C-1}$ and optimize over log-odds $l \in \mathbb{R}^{C-1}$, i.e.,

$$\hat{\mathbf{p}} = \sigma(\mathbf{l}^*)$$

 $\mathbf{l}^* = \operatorname*{arg\,min}_{\mathbf{l} \in \mathbb{R}^{C-1}} \ell(\mathbf{q}, \mathbf{M}\sigma(\mathbf{l}))$

⁹ Bunse, "On Multi-Class Extensions of Adjusted Classify and Count", 2022.

Implicit constraints

Can we use unconstrained optimization algorithms?

Yes:⁹ use the soft-max operator $\sigma : \mathbb{R}^{C-1} \to \Delta^{C-1}$ and optimize over log-odds $\mathbf{l} \in \mathbb{R}^{C-1}$, i.e.,

$$\begin{aligned} \hat{\mathbf{p}} &= \sigma(\mathbf{l}^*) \\ \mathbf{l}^* &= \operatorname*{arg\,min}_{\mathbf{l} \in \mathbb{R}^{C-1}} \, \ell\left(\mathbf{q}, \, \mathbf{M}\sigma(\mathbf{l})\right) \\ \sigma(\mathbf{l}) \Big]_i &= \begin{cases} \frac{1}{1 + \sum_{j=1}^{C-1} \exp(\mathbf{l}_j)} & \text{if } i = 1 \\ \\ \frac{\exp(\mathbf{l}_{i-1})}{1 + \sum_{j=1}^{C-1} \exp(\mathbf{l}_j)} & \forall i \in \{2, 3, \dots C\} \end{cases} \end{aligned}$$

⁹ Bunse, "On Multi-Class Extensions of Adjusted Classify and Count", 2022.

Synopsis

Components of a quantification algorithm:

- a data representation $\Phi \, : \, \mathcal{X} \to \mathcal{Z}$
- a loss function ℓ : $\mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$
- an optimization algorithm (matrix inversion does not suffice!)

Next steps:

- define concrete choices of $\,\Phi\,$ and $\,\ell\,$ (in addition to those of ACC and PACC)
- discuss algorithms beyond solutions of $\, {\bf q} = {\bf M} {\bf p}$

- 1. Problem statement
- 2. Desirable properties of quantifiers
- 3. Binary quantifiers
- 4. Multi-class quantifiers
- 5. Numerical optimization

6. Loss functions & data representations

7. Beyond linear systems of equations

(Probabilistic) Adjusted Classify & Count

Loss function:

$$\ell(\mathbf{q},\mathbf{Mp}) \;=\; \left\|\mathbf{q}-\mathbf{Mp}
ight\|_2^2$$
 (least squares)

Representation:^{10,11}

$$\Phi(\mathbf{x}) = \begin{cases} \mathbbm{1}_{h(\mathbf{x})} \in \{0,1\}^C & \text{ACC} \text{ (a one-hot encoding of } h(\mathbf{x})) \\ \\ s(\mathbf{x}) \in \Delta^{C-1} & \text{PACC} \end{cases}$$

where

+
$$h:\mathcal{X}
ightarrow \mathcal{Y}$$
 a "hard" classifier such that $h(\mathbf{x}) \,=\, \hat{y}$

+ $s:\mathcal{X}\to \Delta^{C-1}\,$ a "soft" classifier such that $s(\mathbf{x})\,\approx\,\mathbb{P}(Y\mid\mathbf{x})$

¹⁰ Firat, "Unified Framework for Quantification", 2016.

¹¹ Bunse, "Unification of Algorithms for Quantification and Unfolding", 2022.

Distribution matching: HDx and HDy

Loss function:

$$\ell(\mathbf{q}, \mathbf{M}\mathbf{p}) = \frac{1}{d} \sum_{i=1}^{d} \mathrm{HD}(\mathbf{q}_{i \bullet}, \mathbf{M}_{i \bullet \bullet}\mathbf{p}) \qquad \text{where} \qquad \mathrm{HD}(\mathbf{a}, \mathbf{b}) = \sqrt{\sum_{i=1}^{b} \left(\sqrt{\mathbf{a}_{i}} - \sqrt{\mathbf{b}_{i}}\right)^{2}}$$

Representation:

$$\Phi(\mathbf{x}) = \begin{cases} \left(\mathbbm{1}_{b_1(\mathbf{x}_1)}, \mathbbm{1}_{b_2(\mathbf{x}_2)}, \dots \mathbbm{1}_{b_d(\mathbf{x}_d)}\right) \in \{0, 1\}^{Bd} & \mathsf{HDx} \\ \\ \left(\mathbbm{1}_{b_1([s(\mathbf{x})]_1)}, \mathbbm{1}_{b_2([s(\mathbf{x})]_2)}, \dots \mathbbm{1}_{b_d([s(\mathbf{x})]_d)}\right) \in \{0, 1\}^{BC} & \mathsf{HDy} \end{cases}$$

where $b_i: \mathbb{R} \to \{1, 2, \dots B\}$ is a binning of the *i*-th feature (or class probability)

Problem: HD is not twice differentiable \Rightarrow prefer HD² instead.¹²

M. Bunse, A. Moreo, F. Sebastiani

¹² Bunse, "qunfold: Composable Quantification and Unfolding Methods in Python", 2023.

Kernel mean matching: EDx, EDy, and others

-

Representation:

$$[\Phi(\mathbf{x})]_i = \frac{1}{|\mathbf{D}_i|} \sum_{\mathbf{x}' \in \mathbf{D}_i} K(\mathbf{x}, \mathbf{x}')$$

where $K:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ is some kernel between data items, e.g.,

•
$$\|\mathbf{x} - \mathbf{x}'\|_2$$
 (Euclidean distance; EDx¹³)
• $\sum_{i=1}^{C-1} \left| \sum_{j=1}^{i} [s(\mathbf{x})]_j - [s(\mathbf{x}')]_j \right|$ (Earth Mover's Distance; EDy¹⁴)

•
$$\exp\left(\frac{-\|\mathbf{x}-\mathbf{x}'\|_2}{(2\sigma)^2}\right)$$
 (Gaussian kernel)

¹³ Kawakubo, Plessis, and Sugiyama, "Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance", 2016.

¹⁴ Castaño et al., "Matching Distributions Algorithms Based on the Earth Mover's Distance for Ordinal Quantification", 2022.

¹⁵ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023.

Kernel mean matching: EDx, EDy, and others

\$

Representation:

$$[\Phi(\mathbf{x})]_i = \frac{1}{|\mathbf{D}_i|} \sum_{\mathbf{x}' \in \mathbf{D}_i} K(\mathbf{x}, \mathbf{x}')$$

where $K:\mathcal{X}\times\mathcal{X}\to\mathbb{R}$ is some kernel between data items, e.g.,

•
$$\|\mathbf{x} - \mathbf{x}'\|_2$$
 (Euclidean distance; EDx¹³)
• $\sum_{i=1}^{C-1} \left| \sum_{j=1}^{i} [s(\mathbf{x})]_j - [s(\mathbf{x}')]_j \right|$ (Earth Mover's Distance; EDy¹⁴)
• $\exp\left(\frac{-\|\mathbf{x} - \mathbf{x}'\|_2}{(2\pi)^2}\right)$ (Gaussian kernel)

Problem: a high computational cost \Rightarrow use a random Fourier approximation¹⁵

¹³ Kawakubo, Plessis, and Sugiyama, "Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance", 2016.

¹⁴ Castaño et al., "Matching Distributions Algorithms Based on the Earth Mover's Distance for Ordinal Quantification", 2022.

¹⁵ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023.

Kernel mean matching: EDx, EDy, and others

\$

Representation:

$$[\Phi(\mathbf{x})]_i = \frac{1}{|\mathbf{D}_i|} \sum_{\mathbf{x}' \in \mathbf{D}_i} K(\mathbf{x}, \mathbf{x}')$$

where $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is some kernel between data items, e.g.,

•
$$\|\mathbf{x} - \mathbf{x}'\|_2$$
 (Euclidean distance; EDx¹³)
• $\sum_{i=1}^{C-1} \left| \sum_{j=1}^{i} [s(\mathbf{x})]_j - [s(\mathbf{x}')]_j \right|$ (Earth Mover's Distance; EDy¹⁴)
• $\exp\left(\frac{-\|\mathbf{x} - \mathbf{x}'\|_2}{(2\sigma)^2}\right)$ (Gaussian kernel)

Problem: a high computational cost \Rightarrow use a random Fourier approximation¹⁵

Loss function (EDx and EDy): $\ell(\mathbf{q}, \mathbf{M}\mathbf{p}) = 2\mathbf{p}^T\mathbf{q} - \mathbf{p}^\top\mathbf{M}\mathbf{p}$ (any other loss is possible)

¹⁴ Castaño et al., "Matching Distributions Algorithms Based on the Earth Mover's Distance for Ordinal Quantification", 2022.

¹³ Kawakubo, Plessis, and Sugiyama, "Computationally Efficient Class-Prior Estimation under Class Balance Change Using Energy Distance", 2016.

¹⁵ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023.

Regularization

So far, we've been very concerned about consistency. But what if

- the data volume is small?
- we've strong assumptions about how the predictions should look like?

¹⁶ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Regularization

So far, we've been very concerned about consistency. But what if

- the data volume is small?
- we've strong assumptions about how the predictions should look like?

Regularization:

$$\ell'(\mathbf{q},\mathbf{Mp}) \;=\; \ell(\mathbf{q},\mathbf{Mp}) \;+\; au\cdot r(\mathbf{p})$$

- + $au \geq 0$ is the regularization impact (i.e., a hyper-parameter that needs to be optimized)
- + $r: \Delta^{C-1} \to \mathbb{R}$ is a regularization term that penalizes any deviation from our assumptions

¹⁶ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Regularization

So far, we've been very concerned about consistency. But what if

- the data volume is small?
- we've strong assumptions about how the predictions should look like?

Regularization:

$$\ell'(\mathbf{q},\mathbf{Mp}) \;=\; \ell(\mathbf{q},\mathbf{Mp})\;+\; au\cdot r(\mathbf{p})$$

- + $au \geq 0$ is the regularization impact (i.e., a hyper-parameter that needs to be optimized)
- + $r: \Delta^{C-1} \to \mathbb{R}$ is a regularization term that penalizes any deviation from our assumptions

Tikhonov regularization:¹⁶

$$r(\mathbf{p}) = \frac{1}{2} (\mathbf{C} \mathbf{p})^2 = \begin{cases} \frac{1}{2} \sum_{i=2}^{C-1} (-\mathbf{p}_{i-1} + 2\mathbf{p}_i - \mathbf{p}_{i+1})^2 & \text{ordinal quantification} \\ \\ \frac{1}{2} \sum_{i=1}^{C-1} (\mathbf{p}_i - \mathbf{p}_{i+1})^2 & \text{deviation from } \mathbf{p}_i = \frac{1}{C} \end{cases}$$

¹⁶ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Synopsis

Many quantification algorithms are combinations of:

- a data representation $\Phi \, : \, \mathcal{X} \to \mathcal{Z}$
- a loss function ℓ : $\mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$
- an optimization algorithm

We have still omitted many methods from this family (ReadMe, PDF, unfolding methods, ...)

Synopsis

Many quantification algorithms are combinations of:

- a data representation $\Phi \, : \, \mathcal{X} \to \mathcal{Z}$
- a loss function ℓ : $\mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$
- an optimization algorithm

We have still omitted many methods from this family (ReadMe, PDF, unfolding methods, ...)

We can alter these algorithms by:

- re-combining their Φ and ℓ
- approximating their representations
- adding regularization

Next step: discuss algorithms beyond solutions of q = Mp

- 1. Problem statement
- 2. Desirable properties of quantifiers
- 3. Binary quantifiers
- 4. Multi-class quantifiers
- 5. Numerical optimization
- 6. Loss functions & data representations

7. Beyond linear systems of equations

Preliminaries:

$$\mathbb{Q}(\mathbf{x} \mid y) \stackrel{\text{Bayes}}{=} \frac{\mathbb{Q}(y \mid \mathbf{x}) \cdot \mathbb{Q}(\mathbf{x})}{\mathbb{Q}(y)} \stackrel{\text{PPS}}{=} \mathbb{P}(\mathbf{x} \mid y) \stackrel{\text{Bayes}}{=} \frac{\mathbb{P}(y \mid \mathbf{x}) \cdot \mathbb{P}(\mathbf{x})}{\mathbb{P}(y)} \qquad \forall \ (\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y}$$

¹⁷ Saerens, Latinne, and Decaestecker, "Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure", 2002.

Preliminaries:

$$\begin{split} \mathbb{Q}(\mathbf{x} \mid y) &\stackrel{\text{Bayes}}{=} \frac{\mathbb{Q}(y \mid \mathbf{x}) \cdot \mathbb{Q}(\mathbf{x})}{\mathbb{Q}(y)} \stackrel{\text{PS}}{=} \mathbb{P}(\mathbf{x} \mid y) \stackrel{\text{Bayes}}{=} \frac{\mathbb{P}(y \mid \mathbf{x}) \cdot \mathbb{P}(\mathbf{x})}{\mathbb{P}(y)} \quad \forall \ (\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y} \\ \Rightarrow \quad \mathbb{Q}(y \mid \mathbf{x}) = \frac{\frac{\mathbb{Q}(y)}{\mathbb{P}(y)} \cdot \mathbb{P}(y \mid \mathbf{x})}{\sum_{y' \in \mathcal{Y}} \frac{\mathbb{Q}(y')}{\mathbb{P}(y')} \cdot \mathbb{P}(y' \mid \mathbf{x})} \quad \text{(the original purpose of this method)} \end{split}$$

¹⁷ Saerens, Latinne, and Decaestecker, "Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure", 2002.

Preliminaries:

$$\begin{split} \mathbb{Q}(\mathbf{x} \mid y) &\stackrel{\text{Bayes}}{=} \frac{\mathbb{Q}(y \mid \mathbf{x}) \cdot \mathbb{Q}(\mathbf{x})}{\mathbb{Q}(y)} \stackrel{\text{PS}}{=} \mathbb{P}(\mathbf{x} \mid y) \stackrel{\text{Bayes}}{=} \frac{\mathbb{P}(y \mid \mathbf{x}) \cdot \mathbb{P}(\mathbf{x})}{\mathbb{P}(y)} \quad \forall \ (\mathbf{x}, y) \in \mathcal{X} \times \mathcal{Y} \\ \Rightarrow \quad \mathbb{Q}(y \mid \mathbf{x}) = \frac{\frac{\mathbb{Q}(y)}{\mathbb{P}(y)} \cdot \mathbb{P}(y \mid \mathbf{x})}{\sum_{y' \in \mathcal{Y}} \frac{\mathbb{Q}(y')}{\mathbb{P}(y')} \cdot \mathbb{P}(y' \mid \mathbf{x})} \quad \text{(the original purpose of this method)} \end{split}$$

SLD / EMQ:¹⁷ repeat the E-step and the M-step until convergence.

¹⁷ Saerens, Latinne, and Decaestecker, "Adjusting the Outputs of a Classifier to New a Priori Probabilities: A Simple Procedure", 2002.

Properties: SLD / EMQ is...

- Fisher consistent¹⁸
- equivalent to the maximum likelihood quantifier¹⁹ (which is to be presented next)
- and it maintains per-example contributions $\hat{\mathbb{Q}}(Y=i\mid \mathbf{x})$

¹⁸ Tasche, "Fisher consistency for prior probability shift", 2017.

¹⁹ Alexandari, Kundaje, and Shrikumar, "Maximum Likelihood with Bias-Corrected Calibration is Hard-To-Beat at Label Shift Adaptation", 2020.

Maximum likelihood

Likelihood principle:

$$\begin{split} \mathcal{L}(\mathbf{p} \mid \mathbf{B}) &= \mathbb{Q}(\mathbf{B} \mid \mathbf{p}) \\ &= \prod_{\mathbf{x} \in \mathbf{B}} \mathbb{Q}(\mathbf{x} \mid \mathbf{p}) \\ &\stackrel{\mathsf{PPS}}{=} \prod_{\mathbf{x} \in \mathbf{B}} \sum_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{x} \mid y) \cdot \mathbf{p}_y \end{split}$$

Maximum likelihood

Likelihood principle:

$$\Rightarrow -\log \mathcal{L}(\mathbf{p} \mid \mathbf{B}) = -\sum_{\mathbf{x} \in \mathbf{B}} \log \sum_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{x} \mid y) \cdot \mathbf{p}_y \\ \propto -\sum_{\mathbf{x} \in \mathbf{B}} \log \sum_{y \in \mathcal{Y}} \frac{\mathbb{P}(y \mid \mathbf{x})}{\mathbb{P}(y)} \cdot \mathbf{p}_y$$

Maximum likelihood

Likelihood principle:

$$\begin{split} \mathcal{L}(\mathbf{p} \mid \mathbf{B}) &= \mathbb{Q}(\mathbf{B} \mid \mathbf{p}) \\ &= \prod_{\mathbf{x} \in \mathbf{B}} \mathbb{Q}(\mathbf{x} \mid \mathbf{p}) \\ &\stackrel{\mathsf{PPS}}{=} \prod_{\mathbf{x} \in \mathbf{B}} \sum_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{x} \mid y) \cdot \mathbf{p}_y \end{split}$$

$$\begin{array}{lll} \Rightarrow & -\log \mathcal{L}(\mathbf{p} \mid \mathbf{B}) & = & -\sum_{\mathbf{x} \in \mathbf{B}} \log \sum_{y \in \mathcal{Y}} \mathbb{P}(\mathbf{x} \mid y) \cdot \mathbf{p}_y \\ \\ & \propto & -\sum_{\mathbf{x} \in \mathbf{B}} \log \sum_{y \in \mathcal{Y}} \frac{\mathbb{P}(y|\mathbf{x})}{\mathbb{P}(y)} \cdot \mathbf{p}_y \end{array}$$

Therefore, choose $\hat{\mathbf{p}} = \arg \min_{\mathbf{p} \in \Delta^{C-1}} - \sum_{\mathbf{x} \in \mathcal{B}} \log \sum_{y \in \mathcal{Y}} \frac{\hat{\mathbb{P}}(y|\mathbf{x})}{\hat{\mathbb{P}}(y)} \cdot \mathbf{p}_y$

Continuous representations

KDEy:²⁰ represent all probabilities through kernel density estimates (KDEs), i.e.,

$$\hat{\mathbb{Q}}(\mathbf{x}) \ = \ \frac{1}{|\mathbf{B}|} \ \sum_{\mathbf{x}' \in \mathbf{B}} \ K(s(\mathbf{x}), s(\mathbf{x}')) \qquad \text{and} \qquad \hat{\mathbb{Q}}(\mathbf{x} \mid y) \ = \ \frac{1}{|\mathbf{D}_y|} \ \sum_{\mathbf{x}' \in \mathbf{D}_y} \ K(s(\mathbf{x}), s(\mathbf{x}')) \qquad \forall \ \mathbf{x} \in \mathcal{X}$$

where $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel function (e.g., a Gaussian kernel with some bandwidth)

²⁰ Moreo, González, and Coz, "Kernel Density Estimation for Multiclass Quantification", 2024.

Continuous representations

KDEy:²⁰ represent all probabilities through kernel density estimates (KDEs), i.e.,

$$\hat{\mathbb{Q}}(\mathbf{x}) = \frac{1}{|\mathbf{B}|} \sum_{\mathbf{x}' \in \mathbf{B}} K(s(\mathbf{x}), s(\mathbf{x}')) \quad \text{and} \quad \hat{\mathbb{Q}}(\mathbf{x} \mid y) = \frac{1}{|\mathbf{D}_y|} \sum_{\mathbf{x}' \in \mathbf{D}_y} K(s(\mathbf{x}), s(\mathbf{x}')) \quad \forall \mathbf{x} \in \mathcal{X}$$

where $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel function (e.g., a Gaussian kernel with some bandwidth)

Remark: this is different from KMM, where $[\Phi(\mathbf{x})]_i = \frac{1}{|\mathbf{D}_i|} \sum_{\mathbf{x}' \in \mathbf{D}_i} K(s(\mathbf{x}), s(\mathbf{x}')) \quad \forall \mathbf{x} \in \mathbf{D} \cup \mathbf{B}$

²⁰ Moreo, González, and Coz, "Kernel Density Estimation for Multiclass Quantification", 2024.

Continuous representations

KDEy:²⁰ represent all probabilities through kernel density estimates (KDEs), i.e.,

$$\hat{\mathbb{Q}}(\mathbf{x}) = \frac{1}{|\mathbf{B}|} \sum_{\mathbf{x}' \in \mathbf{B}} K(s(\mathbf{x}), s(\mathbf{x}')) \quad \text{and} \quad \hat{\mathbb{Q}}(\mathbf{x} \mid y) = \frac{1}{|\mathbf{D}_y|} \sum_{\mathbf{x}' \in \mathbf{D}_y} K(s(\mathbf{x}), s(\mathbf{x}')) \quad \forall \mathbf{x} \in \mathcal{X}$$

where $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is a kernel function (e.g., a Gaussian kernel with some bandwidth)

Remark: this is different from KMM, where $[\Phi(\mathbf{x})]_i = \frac{1}{|\mathbf{D}_i|} \sum_{\mathbf{x}' \in \mathbf{D}_i} K(s(\mathbf{x}), s(\mathbf{x}')) \quad \forall \mathbf{x} \in \mathbf{D} \cup \mathbf{B}$

Optimization task: is determined by the choice of loss function.

- Losses with closed-form solutions lead to specific tasks (e.g., Cauchy-Schwarz)
- Negative log-likelihood leads to the maximum likelihood estimator (with a KDE representation)
- + MC-sampled losses lead to $\mathbf{q}=\mathbf{M}\mathbf{p}$ tasks

²⁰ Moreo, González, and Coz, "Kernel Density Estimation for Multiclass Quantification", 2024.

Symmetric learning

So far, we have assumed a training set $D = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n$, but what if we have

$$\mathbf{D}' = \left\{ (\mathbf{B}_i, \, \mathbf{p}_i) \,\in\, \cup_{m=1}^{\infty} \mathcal{X}^m \times \Delta^{C-1} \right\}_{i=1}^n$$

²¹ Pérez-Mon et al., "Quantification using Permutation-Invariant Networks based on Histograms", 2024.

Symmetric learning

So far, we have assumed a training set $D = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n$, but what if we have

$$\mathbf{D}' = \left\{ (\mathbf{B}_i, \, \mathbf{p}_i) \in \cup_{m=1}^{\infty} \mathcal{X}^m \times \Delta^{C-1} \right\}_{i=1}^n$$

Requirements: the representations of the B_i need to be...

²¹ Pérez-Mon et al., "Quantification using Permutation-Invariant Networks based on Histograms", 2024.

Symmetric learning

So far, we have assumed a training set $D = \{(x_i, y_i) \in \mathcal{X} \times \mathcal{Y}\}_{i=1}^n$, but what if we have

$$\mathbf{D}' = \left\{ (\mathbf{B}_i, \, \mathbf{p}_i) \,\in\, \cup_{m=1}^{\infty} \mathcal{X}^m \times \Delta^{C-1} \right\}_{i=1}^n$$

Requirements: the representations of the B_i need to be...

- variable-size
- permutation-invariant

²¹ Pérez-Mon et al., "Quantification using Permutation-Invariant Networks based on Histograms", 2024.
Symmetric learning

So far, we have assumed a training set $\mathrm{D}=\{(x_i,y_i)\,\in\,\mathcal{X} imes\mathcal{Y}\}_{i=1}^n$, but what if we have

$$\mathbf{D}' = \left\{ (\mathbf{B}_i, \, \mathbf{p}_i) \in \cup_{m=1}^{\infty} \mathcal{X}^m \times \Delta^{C-1} \right\}_{i=1}^n$$

Requirements: the representations of the B_i need to be...

- variable-size
- permutation-invariant

HistNetQ:21

$$\ell(\theta) \; = \; \frac{1}{|\mathbf{D}'|} \sum_{(\mathbf{B}, \, \mathbf{p}) \in \mathbf{D}'} \mathrm{RAE}(\lambda_{\theta}(\mathbf{B}), \, \mathbf{p})$$

where λ_{θ} a neural network with a differentiable histogram layer

²¹ Pérez-Mon et al., "Quantification using Permutation-Invariant Networks based on Histograms", 2024.

Idea: compute a central tendency (mean, median) of multiple predictions.

• multiple classifiers within different quantifiers (MC-MQ) or within duplicates of the same (MC-SQ)²²

²² Donyavi, Serapião, and Batista, "MC-SQ and MC-MQ: Ensembles for Multi-class Quantification", 2024.

²³ Pérez-Gállego, Quevedo, and Coz, "Using ensembles for problems with characterizable changes in data distribution: A case study on quantification", 2017.

²⁴ Pérez-Gállego et al., "Dynamic ensemble selection for quantification tasks", 2019.

Idea: compute a central tendency (mean, median) of multiple predictions.

- multiple classifiers within different quantifiers (MC-MQ) or within duplicates of the same (MC-SQ)²²
- for each member, use all data or use different subsamples²³

²² Donyavi, Serapião, and Batista, "MC-SQ and MC-MQ: Ensembles for Multi-class Quantification", 2024.

²³ Pérez-Gállego, Quevedo, and Coz, "Using ensembles for problems with characterizable changes in data distribution: A case study on quantification", 2017.

²⁴ Pérez-Gállego et al., "Dynamic ensemble selection for quantification tasks", 2019.

Idea: compute a central tendency (mean, median) of multiple predictions.

- multiple classifiers within different quantifiers (MC-MQ) or within duplicates of the same (MC-SQ)²²
- for each member, use all data or use different subsamples²³
- maintain all members, select a subset at training time, or select a subset at prediction time²⁴

²² Donyavi, Serapião, and Batista, "MC-SQ and MC-MQ: Ensembles for Multi-class Quantification", 2024.

²³ Pérez-Gállego, Quevedo, and Coz, "Using ensembles for problems with characterizable changes in data distribution: A case study on quantification", 2017.

²⁴ Pérez-Gállego et al., "Dynamic ensemble selection for quantification tasks", 2019.

Idea: compute a central tendency (mean, median) of multiple predictions.

- multiple classifiers within different quantifiers (MC-MQ) or within duplicates of the same (MC-SQ)²²
- for each member, use all data or use different subsamples²³
- maintain all members, select a subset at training time, or select a subset at prediction time²⁴
- concatenate $\Phi(\mathbf{x}) = (\Phi_1(\mathbf{x}), \Phi_2(\mathbf{x}), \dots \Phi_E(\mathbf{x}))$ and minimize the loss once²⁵

Open issue: under which circumstances are ensembles *provably* better than single models?

²² Donyavi, Serapião, and Batista, "MC-SQ and MC-MQ: Ensembles for Multi-class Quantification", 2024.

²³ Pérez-Gállego, Quevedo, and Coz, "Using ensembles for problems with characterizable changes in data distribution: A case study on quantification", 2017.

²⁴ Pérez-Gállego et al., "Dynamic ensemble selection for quantification tasks", 2019.

Conclusion: supervised methods for quantification

Conclusion: supervised methods for quantification

Goal: under PPS, find a quantifier $\lambda:\cup_{m=1}^{\infty}\mathcal{X}^m$ \to Δ^{C-1} that is

- Fisher-consistent
- has low estimation error // what about other settings than PPS?

Conclusion: supervised methods for quantification

Goal: under PPS, find a quantifier $\lambda : \bigcup_{m=1}^{\infty} \mathcal{X}^m \to \Delta^{C-1}$ that is

- Fisher-consistent
- has low estimation error // what about other settings than PPS?

Linear systems of equations: most algorithms can be expressed as solutions of some $\mathbf{q}=\mathbf{M}\mathbf{p}$

- choose a data representation $\Phi: \mathcal{X} \to \mathcal{Z}$ // what makes a good Φ ?
- choose a loss function $\ell: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ // what makes a good ℓ ?
- choose an optimization algorithm (constrained or soft-max)

Conclusion: supervised methods for quantification

Goal: under PPS, find a quantifier $\lambda : \bigcup_{m=1}^{\infty} \mathcal{X}^m \to \Delta^{C-1}$ that is

- Fisher-consistent
- has low estimation error // what about other settings than PPS?

Linear systems of equations: most algorithms can be expressed as solutions of some $\mathbf{q}=\mathbf{M}\mathbf{p}$

- choose a data representation $\Phi: \mathcal{X} \to \mathcal{Z}$ // what makes a good Φ ?
- choose a loss function $\ell: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ // what makes a good ℓ ?
- choose an optimization algorithm (constrained or soft-max)

Notable other methods:

- SLD / EMQ
- maximum likelihood // can we bound its error?
- continuous representations
- symmetric learning
- ensembles // are they provably better?

Earth

²⁷ Fig: Morik and Rhode, Machine Learning under Resource Constraints – Discovery in Physics, 2023

Issues to be resolved:

• ordinality: $y_i \prec y_{i+1} \,\, orall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility²⁸)

²⁸ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Issues to be resolved:

- ordinality: $y_i \prec y_{i+1} \,\, orall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility²⁸)
- background: $\mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x}, arnothing) + \sum_{y=1}^{C} \mathbb{Q}(\mathbf{x}, y)$ (PPS with a noise class²⁹)

²⁸ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Issues to be resolved:

- ordinality: $y_i \prec y_{i+1} \,\,\forall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility²⁸)
- background: $\mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x}, arnothing) + \sum_{y=1}^{C} \mathbb{Q}(\mathbf{x}, y)$ (PPS with a noise class²⁹)
- class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in B \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in B \mid y_j) \exists i \neq j$

²⁸ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Issues to be resolved:

- ordinality: $y_i \prec y_{i+1} \,\,\forall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility²⁸)
- background: $\mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x}, arnothing) + \sum_{y=1}^C \mathbb{Q}(\mathbf{x}, y)$ (PPS with a noise class²⁹)
- class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in B \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in B \mid y_j) \exists i \neq j$
- changing environment: $\mathbb{Q}(\mathbf{x},y) = \sum_{e \in \mathcal{E}} \mathbb{Q}(\mathbf{x},y,e)$

²⁸ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Issues to be resolved:

- ordinality: $y_i \prec y_{i+1} \,\,\forall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility²⁸)
- background: $\mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x}, arnothing) + \sum_{y=1}^{C} \mathbb{Q}(\mathbf{x}, y)$ (PPS with a noise class²⁹)
- class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in B \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in B \mid y_j) \exists i \neq j$
- changing environment: $\mathbb{Q}(\mathbf{x},y) = \sum_{e \in \mathcal{E}} \mathbb{Q}(\mathbf{x},y,e)$
- concept shift: $\mathbb{Q}(\mathbf{x} \mid y) \neq \mathbb{P}(\mathbf{x} \mid y)$ (in addition to PPS)

²⁸ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

Issues to be resolved:

- ordinality: $y_i \prec y_{i+1} \,\,\forall \, i \in \mathcal{Y}$ (to be covered through regularization for ordinal plausibility²⁸)
- background: $\mathbb{Q}(\mathbf{x}) = \mathbb{Q}(\mathbf{x}, arnothing) + \sum_{y=1}^{C} \mathbb{Q}(\mathbf{x}, y)$ (PPS with a noise class²⁹)
- class-conditional selection bias: $\mathbb{Q}(\mathbf{x} \in B \mid y_i) \neq \mathbb{Q}(\mathbf{x} \in B \mid y_j) \exists i \neq j$
- changing environment: $\mathbb{Q}(\mathbf{x},y) = \sum_{e \in \mathcal{E}} \mathbb{Q}(\mathbf{x},y,e)$
- concept shift: $\mathbb{Q}(\mathbf{x} \mid y) \neq \mathbb{P}(\mathbf{x} \mid y)$ (in addition to PPS)
- inspect contributions of individual data items $\mathbf{x} \in B$ to $\lambda(B)$ (data selection, human in the loop)

²⁸ Bunse et al., "Regularization-based Methods for Ordinal Quantification", 2024.

²⁹ Dussap, Blanchard, and Chérief-Abdellatif, "Label Shift Quantification with Robustness Guarantees via Distribution Feature Matching", 2023.