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Abstract. The purpose of class distribution estimation (also known as
quantification) is to determine the values of the prior class probabilities
in a test dataset without class label observations. A variety of methods
to achieve this have been proposed in the literature, most of them based
on the assumption that the distributions of the training and test data
are related through prior probability shift (also known as label shift).
Among these methods, Friedman’s method has recently been found to
perform relatively well both for binary and multi-class quantification.
We discuss the properties of Friedman’s method and another approach
mentioned by Friedman (called DeBias method in the literature) in the
context of a general framework for designing linear equation systems for
class distribution estimation.
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1 Introduction

The purpose of class distribution estimation (also known as quantification) is
to determine the values of the prior class probabilities in a test dataset without
class label observations. A variety of methods to achieve this have been proposed
in the literature, most of them based on the assumption that the distributions of
the training and test data are related through prior probability shift (also known
as label shift). See González et al. [10] and Esuli et al. [6] for recent surveys of
applications of and methods for quantification.

Friedman’s [9] method has recently been found to perform relatively well
both for binary and multi-class quantification (Schuhmacher et al. [18], Donyavi
et al. [5]). On many real-world datasets, the performance of Friedman’s method
seems to exceed the performance of the EM algorithm (Saerens et al. [16]) which
is an implementation of the maximum likelihood estimator for the test prior
class probabilities (also called class prevalences). This observation is somewhat
surprising because both Friedman’s estimator and the EM algorithm involve
estimates of the training posterior class probabilities which are notoriously hard
to estimate. Hence one might expect that the performances of Friedman’s method
and the EM algorithm are at a more comparable level.
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In order to find an explanation for the relatively good performance of Fried-
man’s method, we study its properties and the properties of another approach
mentioned by Friedman (called DeBias method by Castaño et al. [4]) in the
context of a general framework for designing linear equation systems for class
distribution estimation.

The outline of this paper and its contributions to the literature are as follows:

– Section 2 sets out the general assumptions and notation for the rest of the
paper.

– In Section 3, we discuss the general framework for designing linear equation
systems for class distribution estimation. (3b) and (3c) of Theorem 1 below
appear to be novel, covariance-based versions of the basic equation (3a).

– In Section 4, we describe Friedman’s method in detail and propose an al-
ternative implementation that avoids direct estimation of the posterior class
probabilities (Remark 1 below).

– In Section 5, we investigate conditions for the uniqueness of the solutions to
linear equation systems for class distribution estimation. In Remark 3, we
show that DeBias, the second method proposed for the binary case by Fried-
man [9] which involves the variance of one of the posterior class probabilities,
is a special case of a covariance matrix-based approach to the multi-class case
considered in Corollary 2. This provides an answer to the open research ques-
tion “How to generalise the inequality of Corollary 6 of Tasche [21] to the
multi-class case?” raised in Section 4.12 of Krempl et al. [13]. In addition,
we show that the population versions of DeBias and ‘Probabilistic adjusted
count (PAC)’ by Bella et al. [1] are identical (Remark 5 below).

– In Section 6, we compare the asymptotic variances of DeBias, Friedman’s
method and the maximum likelihood estimator in the binary case by means
of a numerical example. The setting of the example is semi-asymptotic with
an infinite training dataset and a finite large test dataset.

– Section 7 concludes the paper with a summary of the findings.

2 Setting

For this paper, we assume the following setting which is quite common in the
study of dataset shift (see, for instance, Moreno-Torres et al. [15]):

– A class variable Y with values in Y = {1, . . . , ω} with ω → 2 (multi-class
case). A features vector X with values in X .

– Each example (or instance) has a class label Y and features X.
– In the training dataset, for all examples their features X and labels Y are

observed. P denotes the training (joint) distribution, also called source dis-
tribution, of (X,Y ) of which the training dataset has been sampled.

– In the test dataset, only the features X of an example can immediately be
observed. Its class label Y becomes known only with delay or not at all. Q
denotes the test (joint) distribution, also called target distribution, of (X,Y )
of which the test dataset has been sampled.
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– We assume 0 < P [Y = y] < 1, 0 < Q[Y = y] < 1 for all y ↑ Y.
– For the sake of a more concise notation, we define py = P [Y = y] and

qy = Q[Y = y] for y ↑ Y.

We also use the notation EP [Z] =
∫
Z dP and EQ[Z] =

∫
Z dQ for integrable

real-valued random variables Z.
The setting described above is called dataset shift or distribution shift in the

literature if training and test distribution are not the same, i.e. P ↓= Q. In the
rest of the paper, we consider the following more specific type of dataset shift.

Definition 1. The training distribution P and the test distribution Q are related

through prior probability shift if for all y ↑ Y and all measurable sets M ↔ X
it holds that

1

P [X ↑ M |Y = y] = Q[X ↑ M |Y = y].

The term ‘prior probability shift’ appears to have been coined by Storkey [20]. In
the literature, prior probability shift is also called target shift (Zhang et al. [27]),
label shift (Lipton et al. [14]), or global drift (Hofer and Krempl [12]).

Prior probability shift implies dataset shift, i.e. P ↓= Q, if P [Y = y] ↓= Q[Y =
y] for at least one y ↑ Y. Hence, as the class labels Y are not observed in
the test dataset, the test prior probabilities qy = Q[Y = y] must be estimated
from feature observations in the test dataset as well as feature and class la-
bel observations in the training dataset. Such an estimation procedure is called
quantification or class distribution estimation.

3 Linear equations for class distribution estimation

In the following, we treat class distribution estimation under prior probability
shift as a parametric estimation problem in a family of mixture distributions:

– We consider the distributions QX on X that can be represented as

QX [M ] =
∑ω

y=1
qy P [X ↑ M |Y = y] (1)

for all measurable sets M ↔ X . The family of these distributions is parame-
trised through the test prior class probabilities (q1, . . . , qω) ↑ (0, 1)ω with the
additional constraint ∑ω

y=1
qy = 1. (2)

– Unless stated otherwise, for the purposes of this paper we assume that the
conditional feature distributions P [X ↑ M |Y = y], M ↔ X , under the
training distribution are known and do not contribute to the estimation
uncertainty.

1 Recall the notion of conditional probability for events A and B: P [A|B] = P [A→B]
P [B]

if P [B] > 0 and P [A|B] = 0 otherwise.
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– The parametrised distribution family defined in (1) is identifiable in the sense
of Definition 11.2.2 of Casella and Berger [3], i.e. QX and Q↑

X di!er whenever
the corresponding parametrisations (q1, . . . , qω) and (q↑1 , . . . , q

↑
ω ) di!er.

According to San Martín and Quintana [17], identifiability is necessary for
the existence of both asymptotically unbiased estimates and consistent estimates.
This observation leaves open the question of how to find such estimates. In the
following, we strive to design estimators of the class prior probabilities qy as
unique solutions to systems of linear equations2.

Calling the following result a theorem is an exaggeration as its proof is very
short and basic. But it is fundamental for the study and estimation of prior
probability shift and in that sense deserves being called a theorem. Of course,
Theorem 1 is not novel. In particular (3a) was mentioned by Saerens et al. [16]
(Eq. (2.5), with Z chosen as a hard classifier) and quite likely also in earlier
works. Even so, linking the notion of prior probability shift to the training dataset
covariances of functions of the features and the indicators of the classes or the
posterior class probabilities might have some degree of novelty, at least in the
multi-class case.

Theorem 1. Let py = P [Y = y] and qy = Q[Y = y] for y ↑ Y. Suppose that

P and Q are related through prior probability shift in the sense of Definition 1

and that the random variable Z is integrable both under P and Q. Then it holds

that
3

EQ[Z] =
∑ω

y=1
qy EP [Z|Y = y] (3a)

=
∑ω

y=1

qy
py

covP
(
Z, 1{Y=y}

)
+ EP [Z]. (3b)

If Z is X-measurable, i.e. if there is a function f : X ↗ R such that Z = f(X),
then it also follows that

4

EQ[Z] =
∑ω

y=1

qy
py

covP
(
Z, P [Y = y|X]

)
+ EP [Z]. (3c)

Proof. The theorem follows from the law of total probability combined with the
definitions of conditional expectation and covariance respectively. ↘≃

(3a) provides the theoretical basis for Firat’s ([7], Section 3.2) constrained
regression approach for quantification under prior probability shift. Firat’s K

2 Other popular approaches to designing estimators include distribution matching
(Gonzàlez et al. [10] and the references therein), ensemble methods (Serapião et
al. [19] and the references therein) and expectation maximisation as implementation
of maximum likelihood estimation (Saerens et al. [16]).

3 For sets S, define the indicator function 1S by 1S(s) = 1 if s → S and 1S(s) = 0 if
s /→ S.

4 P [Y = y|X] denotes the posterior probability of Y = y given X in the sense of general
conditional probability as defined, for instance, in Section 33 of Billingsley [2].
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classes correspond to the ω classes of this paper. The L rows of Firat’s matrix X
emerge when (3a) is applied to L di!erent variables Z1, . . . , ZL.

As noted by Firat, (3a), (3b) or (3c) can be the starting point for setting
up a system of linear equations for estimating the class prior probabilities qy
under prior probability shift. For instance, the choice fy(X) = 1Cy (X) as crisp
(or hard) ‘one vs. all’ classifier for class y, learned on the training dataset only,
leads to the ‘Adjusted Count’ estimation approach used in the popular paper
by Lipton et al. [14] who described it as ‘method of moments’. Observe that
for this version of ‘one vs. all’, there is no problem with changing the type of
dataset shift, in contrast to the issue for combined ‘one vs. all’ quantifiers noted
by Friedman [9] and Donyavi et al. [5].

Some questions should be considered when designing a concrete instance of
such a linear equation system for quantification.

How many equations should be used? If the number of classes in the model
is ω = |Y| one might conclude that at least ω equations are needed in order to
obtain a unique solution. However, as another consequence of the law of total
probability, the qy must additionally fulfil the linear equation (2). Hence, in
order to achieve uniqueness of the solution, at least ω equations must be set up
if (2) is considered a constraint that is checked once a solution has been found.
Alternatively, if (2) is to be taken into account at the same time as the other
equations, for uniqueness as a minimum it su"ces to set up ω ⇐ 1 additional
equations on the basis of Theorem 1. Sticking with ω ⇐ 1 equations has the
advantage of reducing the number of random variables Z that must be chosen
for the equations in Theorem 1.

If more then ω equations are set up the resulting linear equation system
for the qy is overdetermined such that in its sample-based versions there might
be no exact solution at all. Nonetheless, the overdetermined case is naturally
encountered when distribution-matching algorithms are implemented via binning
of the feature space X (DFx methods) or of the range of a continuous scoring
classifier (DFy methods), see Firat [7], Castaño et al. [4] and the references in the
latter paper. To work around the lack of exact solutions, typically approximate
solutions are determined by jointly minimising the di!erences between the left-
hand and right-hand sides of the equations with respect to some specific metric
like the Euclidean norm or the Hellinger divergence (see for instance Castaño et
al. [4]).

In the following, we focus on the cases of systems of ω and ω ⇐ 1 equations,
in the latter case together with constraint (2).

How should the random variables Z appearing in the equations of Theorem 1

be chosen? A very basic criterion for choosing the variables Z is that it must be
possible to compute them from observations of the features X only. This follows
from the fact that on the left-hand sides of the equations in Theorem 1, the
variables Z are integrated under the test distribution Q but the class labels Y
are not observed under Q. Hence one must make sure that Z = f(X) for some
function f .
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Among others, the following criteria for selecting such functions f have been
considered in the literature:
– Reducing the variances of the estimated qy. See Friedman [9] and Vaz et

al. [25] for approaches to the direct minimisation of the variance. Findings
by Vaz et al. [24] and Tasche [22] suggest that deploying variables Z that are
able to separate the classes with high accuracy also reduces the variances of
the class prior estimates.

– Speed of computation. See for instance Hassan et al. [11].

With the exception of Hassan et al. [11], in the literature primarily the choices
Z = 1Cy (hard classifier for one of the classes y in Y) and Z = P [Y = y|X]
(posterior probability under P for class y) have been considered. Below, we
consider Friedman’s [9] choices of hard classifiers and Z = P [Y = y|X] in more
detail.

4 Friedman’s method

Friedman [9] proposed two class distribution estimation methods:
– He discussed in detail one method (later called ‘Friedman’s method’ by

Schuhmacher et al. [18]) based on a specific choice of hard classifiers both
for the binary and multi-class cases. We revisit Friedman’s method in this
section.

– Another method, specified only for the binary case, is based on the variance
of the posterior positive class probability under the training distribution
(later called ‘DeBias’ method by Castaño et al. [4]). This method, without
being named, had been mentioned before by Tasche [21] as Corollary 6. We
discuss this approach in Remark 3 below.

First, we consider Friedman’s method in the binary case ω = 2. As Friedman
himself wrote he was not the first researcher to think about this method.

Method Max (Forman [8], Section 2.2). Forman wrote on page 173: “Consid-
ering the earlier discussion of small denominators, another likely policy is where
the denominator (tpr-fpr) is maximized: method Max.” Here, Forman referred to
crisp binary classifiers (not necessary most accurate) which were derived from a
‘raw classifier’ (i.e. a real-valued scoring classifier).

Accordingly, Friedman’s method in the binary case is the special case of
Forman’s method Max when the underlying scoring classifier is chosen as the
Bayes classifier, i.e. the posterior probability of the positive class.

Derivation of Friedman’s method. Firat [7] describes on p. 2 the rationale
for Friedman’s method as follows: “Friedman uses the optimum threshold that
minimizes the variance of proportion estimates (Friedman, 2014).” This state-
ment is somewhat misleading, as Friedman [9] actually does not maximise the
variance of the estimator but only the denominator on the right-hand side of the
following equation (in the notation of this paper)

q1 =
EQ[Z]⇐ EP [Z|y = 2]

EP [Z|y = 1]⇐ EP [Z|y = 2]
, (4)
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over all random variables 0 ⇒ Z = f(X) ⇒ 1. Note that (4) is a special case of
(3a) for ω = 2.

It turns out that

arg max
f :X↓[0,1]

EP [f(X)|y = 1]⇐ EP [f(X)|y = 2] = f↑ (5)

with f↑(x) = 1 if P [Y = 1|X = x] > p1, f↑(x) = 0 if P [Y = 1|X = x] < p1 and
f↑(x) arbitrary if P [Y = 1|X = x] = p1.

The solution to the problem of minimising the sample variance of the esti-
mator defined by (4) is less obvious. It has been tackled numerically by Vaz et
al. ([25], Section 2.3), and by Tian et al. [23] by involving influence functions.

Remark 1. Friedman [9] and subsequent users of his method appear to have
implemented it by means of plugging-in an estimate of the posterior probability
P [Y = 1|X] into the function f↑ as defined in (5). However, as P [Y = 1|X] could
be di"cult to estimate with satisfactory accuracy, such an implementation might
be suboptimal.

Note that (5) is equivalent to

arg min
f :X↓[0,1]

(1⇐p1)EP [f(X)1{Y=1}]+p1 EP [(1⇐f(X))1{Y=2}] = 1⇐f↑, (6)

with f↑ as in (5). (6) can be read as the problem to minimise the expected
cost-sensitive error for a binary classification problem. This problem can be
dealt with directly through a variety of approaches, resulting in approximations
of the optimal classifier which do not require the estimation of P [Y = 1|X].
The cost-sensitive minimisation problem can also be translated into a standard
classification problem by appropriate re-weighting (Zadrozny et al. [26]). ↘≃

Friedman’s method for more than two classes. Friedman [9] suggested defining
Zy = f↑

y (X) for y ↑ Y with f↑
y (x) = 1 if P [Y = y|X = x] > py, f↑

y (x) = 0 if
P [Y = y|X = x] ⇒ py, and then using (3a) with Zy, y = 1, . . . , ω, to obtain a
system of ω linear equations for the test prior probabilities of the classes y ↑ Y.

According to Schuhmacher et al. [18], Friedman’s method works well in bi-
nary quantification problems and still achieves good performance in multi-class
settings.

5 Uniqueness of solutions and covariance matrix-based
approaches

As discussed in Section 3, uniqueness of the solutions is an important design cri-
terion for setting up a system of linear equations for class distribution estimation
under prior probability shift. In this section, we provide more detail regarding
the number of equations needed and look closer at designs based on covariance
matrices estimated in the training dataset.
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5.1 How many equations are needed?

(3c) of Theorem 1 is interesting because the choice Z = P [Y = y|X] for fixed
y = 1, . . . , ω, implies the matrix identity




EQ

[
P [Y = 1|X]

]
⇐ p1

...
EQ

[
P [Y = ω|X]

]
⇐ pω



 = εP ⇑





q1
p1

...
qω
pω



 , (7)

εP =




covP

(
P [Y = 1|X], P [Y = 1|X]

)
. . . covP

(
P [Y = 1|X], P [Y = ω|X]

)

...
. . .

...
covP

(
P [Y = ω|X], P [Y = 1|X]

)
. . . covP

(
P [Y = ω|X], P [Y = ω|X]

)



 .

(7) connects the prior class probabilities py under the training distribution, the
prior class probabilities qy under the test distribution, and the averages under
the test distribution EQ

[
P [Y = y|X]

]
of the training posterior class probabilities

through the covariance matrix εP of the training posterior probabilities under
the training distribution. All quantities in (7) but the test class prior probabilities
qy can be estimated from the training dataset and the features in the test dataset
in principle. Hence, if the square matrix εP were invertible, (7) could be solved
for the qy by matrix inversion.

Unfortunately, as follows from the following proposition, the covariance ma-
trix εP is never invertible.

Proposition 1. Let Z1, . . . , Zr be integrable random variables under the dis-

tribution P . Suppose that Y is a discrete random variable with values in Y =
{1, . . . , ω} with ω → 2 and X is a random vector with values in X . Define the

matrices M = (mij)i=1,...,r
j=1,...,ω

and M↑ = (m↑
ij)i=1,...,r

j=1,...,ω
by

mij = cov(Zi, 1{Y=j}) and m↑
ij = cov

(
Zi, P [Y = j|X]

)
.

Then it follows that

rank(M) ⇒ ω⇐ 1 and rank(M↑) ⇒ ω⇐ 1.

Proof. Due to the fact that 1 =
∑ω

j=1 1{Y=j} and 1 =
∑ω

j=1 P [Y = j|X], the
vector v = (1, 1, . . . , 1)T ↑ Rω is an element of the kernels of M and M↑, i.e. it
holds that M ⇑ v = 0 = M↑ ⇑ v. This implies the assertion. ↘≃

As a consequence of Proposition 1, there is no possible choice of random
variables Z1, . . . , Zω that could serve on the basis of (3b) or (3c) to create a
system of ω linear equations with a unique solution for the ω unknowns q1, . . . , qω.
However, Proposition 1 leaves open the question if such an equation system can
be constructed on the basis of (3a).

Remark 2. For integrable random variables Z1, . . . , Zr, define the matrix M̃ =
(m̃ij)i=1,...,r

j=1,...,ω
by m̃ij = EP [Zi|Y = j].
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M̃ can be rewritten as
M̃ = L⇑D, (8a)

where

L =




EP [Z1 1{Y=1}] . . . EP [Z1 1{Y=ω}]

...
. . .

...
EP [Zr 1{Y=1}] . . . EP [Zr 1{Y=ω}]



 (8b)

and D = (dij)i,j=1,...,ω is the diagonal matrix with dij = 1
pi

if i = j and dij = 0

if i ↓= j. In particular, we have rank(D) = ω.
Define the vector v = (1, 1, . . . , 1)T as in the proof of Proposition 1. Then it

follows that L ⇑ v = (EP [Z1], . . . , EP [Zr])T . If Z1, . . . , Zr are chosen such that
(EP [Z1], . . . , EP [Zr]) ↓= 0, as a consequence L⇑ v ↓= 0 results. Hence there is no
obvious reason as in the case of Proposition 1 for the rank of L (and by (8a) also
of M̃) to be less than maximal, i.e. being equal to min(r, ω). This observation
suggests that (3a) can be used to obtain a system of ω linear equations with a
unique solution for the test class prior probabilities q1, . . . , qω. ↘≃

5.2 Invertible covariance matrices

The fact that the covariance εP of the posterior class probabilities P [Y = y|X],
y ↑ Y in (7) cannot be inverted is caused by the linear dependence between the
posterior probabilities since

∑ω
y=1 P [Y = y|X] = 1. This issue can be avoided

by disregarding one of probabilities, say P [Y = ω|X]. Indeed, making use of the
identity 1{Y=ω} = 1 ⇐

∑ω→1
y=1 1{Y=y} in (3b) produces the following corollary to

Theorem 1.

Corollary 1. Let py = P [Y = y] and qy = Q[Y = y] for y ↑ Y. Suppose that P
and Q are related through prior probability shift in the sense of Definition 1 and

that the random variable Z is integrable both under P and Q. Then it holds that

EQ[Z] =
∑ω→1

y=1


qy
py

⇐ qω
pω


covP

(
Z, 1{Y=y}

)
+ EP [Z]. (9a)

If Z is X-measurable, i.e. if there is a function f : X ↗ R such that Z = f(X),
then it also follows that

EQ[Z] =
∑ω→1

y=1


qy
py

⇐ qω
pω


covP

(
Z, P [Y = y|X]

)
+ EP [Z]. (9b)

Corollary 1 suggests the following approach to estimating the test class prior
probabilities q1, . . . , qω.

Corollary 2. Assume that the functions f1, . . . , fω→1 : X ↗ R are such that the

matrix

C =




cov(f1(X), 1{Y=1}) . . . cov(f1(X), 1{Y=ω→1})

.

.

.
. . .

.

.

.

cov(fω→1(X), 1{Y=1}) . . . cov(fω→1(X), 1{Y=ω→1})



 (10a)
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has rank ω⇐ 1, i.e. it is invertible.

Let
(
EQ[f1(X)] ⇐ EP [f1(X)], . . . , EQ[fω→1(X)] ⇐ EP [fω→1(X)]

)T
= z and

C→1 ⇑ z = (s1, . . . , sω→1)T .

Then it follows that

qy = py


sy + 1⇐

∑ω→1

i=1
pi si


, y = 1, . . . , ω⇐ 1, qω = pω


1⇐

∑ω→1

i=1
pi si


.

(10b)

Observe that as a consequence of the general properties of conditional expec-
tation5 matrix C of (10a) can be represented as

C =




cov(f1(X), P [Y = 1|X]) . . . cov(f1(X), P [Y = ω⇐ 1|X])

...
. . .

...
cov(fω→1(X), P [Y = 1|X]) . . . cov(fω→1(X), P [Y = ω⇐ 1|X])



 . (11)

With the special choice fy(X) = P [Y = y|X] for y = 1, . . . , ω⇐1 matrix C as rep-
resented in (11) becomes the covariance matrix of ε↑

P of P [Y = 1|X], . . . , P [Y =
ω⇐ 1|X].

Remark 3 (DeBias method). Suppose we are in the binary case ω = 2 and apply
Corollary 2 with C as given in (11) and f1(X) = P [Y = 1|X]. This implies
C = ε↑

P = var
[
P [Y = 1|X]

]
. We then obtain by means of (10b)

q1 =
p1 (1⇐ p1)

varP
[
P [Y = 1|X]

]
(
EQ

[
P [Y = 1|X]

]
⇐ p1

)
+ p1, (12a)

which is equivalent to

EQ

[
P [Y = 1|X]

]
= q1

varP
[
P [Y = 1|X]

]

p1 (1⇐ p1)
+ p1


1⇐

varP
[
P [Y = 1|X]

]

p1 (1⇐ p1)


.

(12b)

(12b) appears to have been first published by Tasche [21] (Corollary 6) and
then to have been presented at a conference by Friedman [9]. This approach to
estimating q1 has been called ‘DeBias’ method by Castaño et al. [4].

Hence, Corollary 2 with C = ε↑
P may be interpreted as multi-class extension

of the DeBias approach. ↘≃

Remark 4 (Probabilistic Adjusted Count (PAC)). Suppose again we are in the
binary case ω = 2 and apply Corollary 2, this time with C as represented in (10a)
and f1(X) = P [Y = 1|X]. This implies C = EP [

[
P [Y = 1|X]1{Y=1}

]
⇐ p21. We

then obtain by means of (10b)

q1 = p1 (1⇐ p1)
EQ

[
P [Y = 1|X]

]
⇐ p1

EP [
[
P [Y = 1|X]1{Y=1}

]
⇐ p21

+ p1 (13a)

5 See, for instance, Problem 34.6 of Billingsley [2]).
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which is equivalent to

q1 =
EQ

[
P [Y = 1|X]

]
⇐ EP

[
P [Y = 1|X]

 Y = 2
]

EP

[
P [Y = 1|X]

 Y = 1
]
⇐ EP

[
P [Y = 1|X]

 Y = 2
] . (13b)

(13b) was called ‘probability estimation & average (P&A)’ method by Bella et
al. [1] but is now commonly referred to as ‘probabilistic adjusted count (PAC)’
(González et al. [10]). Its multi-class extension is sometimes called ‘generalized
probabilistic adjusted count (GPAC)’ (see, for instance, Schuhmacher et al. [18])
and also covered by Corollary 2 with the choice fy(X) = P [Y = y|X] in (10a).

↘≃

Remark 5. Observe that in (13a) it holds that

EP [
[
P [Y = 1|X]1{Y=1}

]
⇐ p21 = varP

[
P [Y = 1|X]

]
.

By (12a), therefore in the binary case the DeBias and PAC methods for class
distribution estimation are identical at population level, i.e. with infinite train-
ing and test datasets. This observation is not necessarily true in practice when
DeBias and PAC estimates respectively are calculated based on sample versions
of (12a) and (13a). ↘≃

6 Comparing asymptotic variances

As mentioned in Section 2, we consider class distribution estimation as a two-
sample problem:

– A training sample for estimating certain quantities (e.g. the true positive and
false negative rates of a classifier) under the training distribution because
the quantities are needed for estimating the class prior probabilities under
the test distribution.

– A test sample for estimating the class prior probabilities under the test
distribution, based on the quantities estimated on the training sample.

Hence minimising the error of a method for class distribution estimation means
minimising the estimation errors on the two samples.

In the following, we look at the semi-asymptotic binary case (ω = 2) where

– the training distribution P is known (infinite sample) such that the prior
class probabilities py and the posterior class probabilities P [Y = y|X] can
be exactly determined in the sense that the estimation error on the training
sample vanishes.

– From the test distribution a finite but large sample of size n is given, and
we focus upon unbiased estimators of the class prior probabilities.

For unbiased estimators the Cramér-Rao lower bound specifies a minimum value
for the variance that cannot be undercut. Denote by qML

n the maximum-likelihood
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(ML) estimator of the test prior probability q1 of class 1 and by ϑ2
ML its so-called

asymptotic variance. Then ε2
ML
n is the Cramér-Rao lower bound for the variances

of the unbiased estimators of q1 on test samples of size n when the training dis-
tribution is known (called here ‘asymptotic setting’), see Section 5 of Tasche [22].

We compare ϑ2
ML with the asymptotic variances in the sense of Definition

10.1.9 of Casella and Berger [3] of the Friedman estimator qFried
n and the DeBias

estimator qDeBias
n of the test prior probability q1 of class 1.

We assume that both the conditional distribution of X given Y = 1 and the
conditional distribution of X given Y = 2 have densities g1 > 0 and g2 > 0
with respect to some measure6 µ. In particular, then the posterior probability
P [Y = 1|X = x] can be represented as

P [Y = 1|X = x] =
p1 g1(x)

p1 g1(x) + (1⇐ p1) g2(x)
, (14)

and the density of the feature vector X under the test distribution Q is given by

gQ = q1 g1 + (1⇐ q1) g2. (15)

Since the training distribution P is assumed to be known, in the following all
expected values EP [Z] are deterministic values that need not be estimated. In
particular, also the prior probabilities p1 and p2 = 1⇐ p1 are known constants.
In contrast, the test distribution Q is not known but an i.i.d. sample X1, . . . , Xn

of the feature vector X drawn from its distribution under Q is observed.
ML estimator. For a detailed description of the ML estimator qML

n (X1, . . . , Xn)
= qML

n we refer to Section 4 of Tasche [22], as there is no closed-form represen-
tation of the ML estimator. However, its asymptotic variance ϑML under Q is
known:

ϑ2
ML = EQ

g1(X)⇐ g2(X)

gQ(X)

2
→1

=
q21 (1⇐ q1)2

varQ
[
EQ[Y = 1|X]

] . (16)

ϑ2
ML is characterised through the property that

⇓
n
(
qML
n ⇐ q1

)
converges in

distribution toward the normal distribution with mean 0 and variance ϑ2
ML.

Observe that ϑ2
ML is a function of q1 but not of p1.

Friedman estimator. In the binary case, under the assumption on semi-
asymptotics made for this section, the Friedman estimator qFried

n (X1, . . . , Xn)
= qFried

n based on the homonymous method presented in Section 4 can be writ-
ten as

qFried
n =

1
n

∑n
i=1 f

↑(Xi)⇐ EP [f↑(X)|y = 2]

EP [f↑(X)|y = 1]⇐ EP [f↑(X)|y = 2]
, (17a)

with f↑ defined through (5). Friedman [9] observed that f↑ can also be repre-
sented as

f↑(x) =


1, if g1(x) > g2(x),

0, if g1(x) ⇒ g2(x).
(17b)

6 In Example 1 below µ is the Lebesgue measure on R.
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As a consequence of (17b), the right-hand side of (17a) does not depend on p1 or
p2 for f↑(X) or any of the f↑(Xi). Therefore, also qFried

n as defined in (17a) does
not change if p1 or p2 are changed. From the central limit theorem, it follows
that

⇓
n (qFried

n ⇐q1) under Q converges toward a normal distribution with mean
0 and variance ϑ2

Fried. More precisely, the asymptotic variance of qFried
n is

ϑ2
Fried =

EQ[f↑(X)]
(
1⇐ EQ[f↑(X)]

)

(EP [f↑(X)|y = 1]⇐ EP [f↑(X)|y = 2])2
. (17c)

DeBias estimator. In the binary case, under the assumption on semi-asymp-
totics made for this section, the DeBias estimator qDeBias

n = qDeBias
n (X1, . . . , Xn)

based on the method presented in Remark 3 can be written as

qDeBias
n =

p1 (1⇐ p1)

varP
[
P [Y = 1|X]

]

1

n

∑n

i=1
P [Y = 1|X = Xi]⇐ p1


+ p1. (18a)

From the central limit theorem, it follows that
⇓
n (qDeBias

n ⇐ q1) under Q con-
verges toward the normal distribution with mean 0 and variance ϑ2

DeBias, or more
precisely, the asymptotic variance of qDeBias

n is

ϑ2
DeBias =


p1 (1⇐ p1)

varP
[
P [Y = 1|X]

]
2

varQ
[
P [Y = 1|X]

]
. (18b)

Note that it follows from (16) and (18b) that ϑ2
ML = ϑ2

DeBias in the case of no
shift, i.e. p1 = q1. As all quantities derived from P are assumed to be constant in
the setting of this section, it follows as in Remark 5 that the asymptotic variance
ϑ2

PAC of the PAC estimator discussed in Remark 4 is identical with ϑ2
DeBias, i.e.

ϑ2
DeBias = ϑ2

PAC. For this reason, PAC is omitted from the following numerical
example.

Example 1. We consider the same univariate binormal model with equal vari-
ances of the class-conditional distributions as in Section 7 of Tasche [22]: The
two normal class-conditional distributions of the feature variable X are given by

X |Y = i ⇔ N (µi,ϑ
2), i = 1, 2 (19a)

for conditional means µ2 < µ1 and some ϑ > 0. We choose

µ1 = 1.5, µ2 = 0, and ϑ = 1. (19b)

The model is then completely specified by choosing p1 = 0.15 for the training
prior probability of class 1. The test prior probability q1 of class 1 is not fixed
as we calculate asymptotic variances of the three above-mentioned prior dis-
tribution estimators for the whole range (0, 1) of q1. The results are shown in
Figure 1. ↘≃

The following observations can be made from Figure 1:
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Fig. 1. Asymptotic variances of maximum likelihood estimator, DeBias estimator and
Friedman estimator in a binormal model. See Example 1 for the specification of the
underlying model.

– The asymptotic variance of the ML estimator is uniformly lower than the
asymptotic variances of the other estimators for the whole possible range of
the test prior probability of class 1 as is to be expected as a consequence of
the Cramér-Rao inequality.

– The asymptotic variance of the Friedman estimator is not uniformly lower
than the asymptotic variance of the DeBias estimator and vice versa.

– The DeBias estimator is almost optimal in the vicinity of the training prior
probability (p1 = 0.15) of class 1, as a consequence of (16) and (18b).

– In contrast, the asymptotic variance of the DeBias estimator is much larger
than the asymptotic variance of the Friedman estimator in the (0.8, 1) range
of the test prior probability that is far away from the training prior proba-
bility 0.15.

7 Conclusions

We have considered Friedman’s [9] method in the context of a general frame-
work for designing linear equation systems for class distribution estimation and
compared its binary version with DeBias which is another method proposed by
Friedman, and the maximum likelihood estimator. The main findings of this
paper are the following:
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– The population versions of DeBias and Probability Adjusted Count (PAC,
Bella et al. [1]) are identical and the binary special case of a new estimation
approach based on inverting the covariance matrix of the training posterior
class probabilities (see Section 5.2).

– Although the definition of Friedman’s method appears to involve evaluations
of the posterior probabilities under the training distribution, the method is
potentially less sensitive to inaccuracies of the posterior estimates on smaller
training datasets than the maximum likelihood estimator. This is a conse-
quence of the fact that Friedman’s methode can be implemented without a
need to estimate the training posterior class probabilities (see Section 4).

– As shown in Example 1, Friedman’s method may be locally outperformed in
terms of asymptotic variance by DeBias. But thanks to its independence of
the training prior class probabilities its performance is relatively uniform over
the full range of possible values of the test prior probability of the positive
class (class 1 in Example 1), in contrast to DeBias’ poor performance for
test prior probabilities which are very di!erent to the corresponding training
prior probability.

Acknowledgments. The author would like to thank three anonymous reviewers for
their useful comments and suggestions.
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