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Abstract. As members of the Lamarr Institute, we participated in the

open LeQua2024 competition. The goal in this competition was to pre-

dict the prevalences of classes in unlabeled sets of data, given a labeled

training set. Our submission builds on the regularized maximization of a

likelihood function with constraints that are implemented through a soft-

max operator. Ultimately, this method ranked in the top three across all

four disciplines of LeQua2024; most notably, we achieved the first place

in discipline T4, a binary quantification task with covariate shift. In this

paper, we detail our approach to the competition.
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1 Introduction

LeQua20241 was a competition hosted for the evaluation of quantification meth-
ods. These methods estimate class prevalences in unlabeled sets of data, i.e.,
they estimate how often each class appears in each data set [4]. To learn the
correspondence between class labels and feature vectors, a labeled training set
is provided. Unlike classification, quantification is not concerned with predicting
the label of each individual data item; what matters are aggregate predictions
for sets of data items [5]. These predictions are complicated by shifts between
the training distribution and the target distributions.

LeQua2024 consists of four disciplines that are separately evaluated. Each
discipline represents a di!erent quantification setting. Our team from the Lamarr
Institute ranked in the top three across all disciplines.

T1 Binary quantification with prior probability shift (3rd place).
T2 Multi-class quantification with prior probability shift (2nd place).
T3 Ordinal quantification with prior probability shift (2nd place).
T4 Binary quantification with covariate shift (1st place).

In Sec. 2, we introduce the quantification method that we used across all
disciplines. Sec. 3 details our optimization of the method’s hyper-parameters.
We conclude with Sec. 4.
1

See https://lequa2024.github.io
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2 Method

Let C be the number of classes and let P = {p → 0 : 1 =
∑C

i=1 pi} be the set of
valid class prevalence vectors. Making a prediction, such that p̂i is an estimate
of P(Y = i) in set unlabeled data items, can be realized through the constrained
minimization of a loss function ω : P ↑ R,

p̂ = argmin
p→P

ω(p) (1)

where ω is typically defined in terms of an unlabeled data set D = {x ↓ X}.
Our approach to all disciplines of LeQua2024 evolves around three aspects:

the choice of the loss function, the implementation of the p ↓ P constraint, and
regularization. Regularization is the only aspect through which we adapt our
method to the particularities of each discipline.

Loss Function We employ the negative log-likelihood loss proposed by Alexan-
dari et al. [1]. This choice is motivated by an exceptional performance recently
reported for this loss function in combination with kernel density estimates [6]
and by the winning performance of a closely related method in the first edi-
tion of LeQua in 2022 [7]. We opted against kernel densities because our initial
experiments did not verify a performance improvement due to them.

Constraints We ensure that p̂ ↓ P by optimizing over a latent vector l ↓ RC↑1

that we feed through a soft-max operator ε : RC↑1 ↑ P [2].

Regularization In T3, we promote solutions that we deem ordinally plausible [3].
In all other disciplines, we promote uniform solutions, assuming that the testing
protocol of the competition exhibits a slight preference towards these outcomes.
The impact of regularization is controlled through a hyper-parameter ϑ → 0.

Combining all of the above aspects, our prediction p̂ = ε(̂l) ↓ P is obtained
after optimizing

l̂ = argmin
l→RC→1

↔
C∑

i=1

log
∑

x→D

P̂(Y = i | X = x)

P̂(Y = i)
· [ε(l)]i + r(l) (2)

where [ε(l)]i =






1
1+

∑C→1
j=1 exp(lj)

if i = 1

exp(li)

1+
∑C→1

j=1 exp(lj)
else

and r(l) =






ϑ ·
∑C↑1

i=1

(
[ε(l)]i ↔ [ε(l)]i+1

)2
for T1, T2, T4

ϑ ·
∑C↑2

i=1

(
[ε(l)]i ↔ 2[ε(l)]i+1 + [ε(l)]i+2

)2
for T3
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We estimate the posteriors P̂(Y = i | X = x) through a multi layer perceptron
(MLP) classifier, except for discipline T4, where a logistic regression outper-
formed the MLP on the validation set. The prior P̂(Y = i) is estimated on the
training set, which is also used to train the classifier within each discipline.

The numerical optimization of the loss function in Eq. 2 is realized through
an unconstrained Newton conjugate gradient trust-region method [9], as it is
implemented in the SciPy package [8]. The full implementation of our approach
is publicly available on GitHub2

3 Hyper-Parameter Optimization

Each discipline of LeQua2024 provides, in addition to a labeled training set,
a validation set for hyper-parameter optimization. This validation set consists
of multiple sets D of data items, each sampled with a discipline-specific type
of distribution shift. Performance evaluations on the validation data act as an
estimate of the final performance on the test data; for the latter, the ground-
truth remained hidden throughout the competition. Participants were able to
choose those hyper-parameters that perform best during validation.

In order to optimize our hyper-parameter selection, we employed a coarse-to-
fine grid-search adaptation strategy, starting from heuristically chosen starting
grids. For numeric parameters, if the optimal value is located at the smallest or
largest value in the grid, we shift it in such a way, that the currently optimal value
now lies at the center. Otherwise, we decrease the di!erence of the candidate
values, in order to allow finer updates to further improve the performance.

The final hyper-parameters that we selected for the di!erent classifiers can
be seen in tables 1 and 2. We note that regularization only had a minor impact
on the validation performance of our method.

Table 1. Final hyper-parameters used for MLP classifiers.

task hidden_layer_size activation alpha learning_rate solver ω
T1 512 tanh 1e→1 1e→3 sgd 0

T2 512 tanh 1e→1 1e→5 adam 0

T3 320 tanh 1e→6 1e→3 adam 1e→3

Table 2. Final hyper-parameters used for logistic regressions.

task C class_weight ω
T4 0.43571 None 1e→5

2
See https://github.com/tobiaslotz/lequa2024

https://github.com/tobiaslotz/lequa2024
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4 Conclusion

Our participation in LeQua2024 evolves around a maximum likelihood estimate
with constraints that are implemented through a soft-max operator. We em-
ployed this estimate across all four disciplines of LeQua2024, with a discipline-
specific regularization that only played a minor role on quantification perfor-
mance. Our method achieved top-ranking results throughout the competition.

The reasons for this outcome—and their implications on future research—
remain yet to be discussed. Two essential prerequisites for this discussion are i)
specific information about the submissions of the other teams and ii) specific in-
formation about the pre-processing of LeQua’s data. Lacking both prerequisites
at the moment, we are looking forward to the conclusions that are to be drawn
by LeQua’s organizers.
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