
Quantification Over Time

Feiyu Li, Hassan H. Gharakheili, and Gustavo Batista ()

University of New South Wales, Sydney NSW 2052, Australia
{feiyu.li, h.habibi, gbatista}@unsw.edu.au

Abstract. Quantification is the supervised machine learning task that
estimates the class distribution in a sample. Therefore, quantification ap-
plications typically involve predicting aggregated quantities, such as the
prevalence of positive comments about a product, personality or com-
pany on a set of social media posts. However, quantification analysis is
more informative when performed over time, such as when we are inter-
ested in tracking public opinion on social media and relating changes in
opinion with relevant events. The vast majority of the literature considers
quantification as a standalone task, assuming the output of quantifiers
to be independent even when applied to temporal data. This paper pro-
poses a new quantification task, Quantification over Time (QoT), that
allies quantification with time series forecasting methods. We propose
an approach based on the Kalman filter, which can help improve the
performance of standalone quantifications and a general framework that
includes both ours and SOTA methods. In an experimental comparison
with several textual datasets and numeral datasets, we show that our
method outperforms existing methods for QoT in the literature, such
as a simple composition of the classify and count method with moving
averages and ReadMe2 as a standalone quantifier. We also show that
our proposal can outperform several baselines, including recently pro-
posed quantifiers used as standalone approaches. Codes are available at
https://github.com/frieli11/quantification-over-time

Keywords: Machine learning · class distribution estimation · quantifi-
cation · time series · Kalman filter.

1 Introduction

Quantification is the supervised Machine Learning task defined by Forman [9] as
the induction of a system “that takes an unlabeled test set as input and returns

its best estimate of the number of cases in each class.” This definition opposes
quantification to classification that focuses on predicting individual instances’
labels. Therefore, quantification finds application in areas where we are inter-
ested in understanding the behaviour of groups instead of predicting the class
of individuals.

The simplest existing quantifier is Classify and Count (CC). It consists of
the direct application of classifiers to quantification problems. This approach
classifies each instance in the unlabeled set and counts the number of instances

https://github.com/frieli11/quantification-over-time

18 F. Li et al.

predicted in each class. CC is a biased quantifier, as previous research [8,9]
showed a systematic error that increases linearly as the unlabeled set class dis-
tribution di!ers from the classifier’s training distribution. CC’s limitations have
led to the proposal of several recent quantifiers that can accurately estimate the
class distribution for a wide range of class prevalence.

Quantification papers have accessed their proposals as standalone methods,
in which the current decision relies only upon the current data and ignores
previous quantifications. The main reason is that the quantification literature has
adopted the Artificial Prevalence Protocol (APP) in their experimental setups.
The APP uses subsampling on a classification dataset to create many test sets
with varying class distributions. However, such experimental protocol does not
match how quantifiers are often used in practice. As Forman noticed in his
seminal work [9], quantifiers are useful “to monitor for changes or trends in the

class distribution over time.”
For example, a standalone quantification can estimate a presidential candi-

date’s approval rate based on posts on social media from a certain period, such
as the last 24 hours [26]. However, a more fundamental question is how the pub-
lic support of the candidate varies over the election period, leading to a series of
quantifications that are likely to show time dependency. Fig. 1 shows how Biden
and Trump supporters’ online activity relates to events such as the candidate’s
debates [1]. Other examples of applications requiring quantification over time are
disease-vector mosquito [6] and pollinator surveillance [20] and disease outbreak
forecasting [15].

Fig. 1. Prevalence of polarized tweets on di!erent presidential candidates from Sept.
1 to Oct. 31, 2020. Adapted from [1].

This paper introduces Quantification over Time (QoT), a quantification task
that allies time series forecasting and quantification. In QoT, a series of quan-
tifications give origin to a time series. The objective of QoT is to provide an
accurate estimate of the class distribution for an unlabeled set St given the data
in this set and previous estimates for unlabelled sets S1, . . . , St→1.

Quantification Over Time 19

This paper also proposes KF-MA, which integrates the Kalman filter and
moving average, aiming to adjust the result from a standalone quantification for
QoT without increasing the requirement for extra labelled data. An algorithm
framework is also introduced to conclude how selected time series forecasting
methods conduct the adjustment in both KF-MA and state-of-the-art methods.
We compare KF-MA with observed methods in literature on several textual and
numeral datasets. We demonstrate in our experiments how KF-MA outperforms
the state-of-the-art. We evaluate KF-MA in various conditions, including dif-
ferent classifiers and recently proposed quantifiers. The results show that our
proposal provides evident improvements in the estimations of standalone quan-
tifications.

This paper is organized into the following sections. Section 2 formalizes the
quantification over time task and defines the notation used throughout this pa-
per. Section 3 reviews the relevant literature, including the methods incorporated
in our experimental comparison. Section 4 introduces our proposed approach.
Section 5 describes the experiment settings and discusses the results. Section 6
provides our concluding remarks and suggests future developments of quantifi-
cation over time.

2 Definitions, Notation and Background

This section formalizes the task of Quantification over Time (QoT). We start
defining the quantification task to highlight the similarities and di!erences be-
tween these two tasks.

2.1 Quantification

Quantification is a supervised machine learning task that predicts the class
prevalence (prior probability or relative frequency) in an unlabeled dataset. Like
other Machine Learning tasks, quantification requires a training set Dtrain =
{(xi, yi)}Ni=1 which is a collection with N examples, where each example xi → X
is a vector with M attributes, and yi → L = {lj}Lj=1 is the class label associated
with xi. The goal of quantification is to learn a function h from Dtrain such that:

h : 2X ↑ ω
L (1)

where 2X is the power set of X , i.e., the set with all possible sets of samples
with the representation X . ωL is the L-probability simplex defined as:

ω
L = {{pi}Li=1|pi → [0, 1],

L∑

i=1

pi = 1} (2)

Given an unlabelled set S → 2X , h returns an L-dimensional vector p̂ =
[p̂1, p̂2, . . . , p̂L]↑, such that

∑L
i=1p̂i = 1. The function h is the quantifier, and p̂

is the estimated class prevalence in set S.

20 F. Li et al.

2.2 Quantification over Time (QoT)

QoT requires a dataset with timestamps so instances can be grouped in periods
of interest, such as hours, days or weeks. For some time t, there is an unlabelled
sample St and a set of quantified class prevalences of previous samples, S1 to
St→1, represented as a vector ω̂t→1 = [p̂1, p̂2, . . . , p̂t→1]. Each p̂i is a vector
with the estimated class prevalences for the set Si. The goal of QoT is to find a
function g such that:

g : (ω̂t→1, St) ↑ ω
L (3)

where g returns the class distribution estimate for St considering previous esti-
mates in ω̂t→1.

2.3 QoT, quantification and time series forecasting

QoT relates to quantification and time series forecasting in the following ways:

– If g only relies on data from St, then g = h, i.e., the QoT quantifier will
ignore the time dependency of the quantifications.

– If g only uses ω̂t→1, then g as a time series forecasting model with the addi-
tional constraint that the estimates must be a valid probability distribution.

Therefore, we can understand QoT as a research task at the intersection
of time series forecasting and quantification. However, we must emphasize that
existing methods from these two areas are inappropriate solutions for the QoT
problems since:

1. Time series forecasting models assume a prediction horizon, which is the
number of time steps ahead that the models should estimate. QoT problems
have an infinite prediction horizon. For most QoT applications, we should
never expect to receive labels for the unlabelled sets St. Suppose we use time
series forecasting models for QoT problems by inputting forecasts into the
model. In that case, we can expect that the error accumulation will make
the model forecasts excessively inaccurate after a long period.

2. Quantification methods ignore the time dependency of the estimates. The
incorporation of time information provides the model with an expected rate
of change. This work hypothesizes that incorporating historical information
with the current quantification provides more accurate estimates.

To conclude this section, we provide additional details about how most QoT
applications work in practice regarding label availability. We use the social media
sentiment analysis from Section 1 as an example.

For most QoT applications, we should not expect to see class labels after the
system deployment. In the case of social media, we should not expect humans
to label any posts manually during the system’s operation. However, we often
have a labelled dataset to train and tune the model’s hyperparameters. We

Quantification Over Time 21

simulate this condition in our experiments by using the initial samples in the
data stream as a training/validation set. This situation di!ers significantly from
the typical operation of time series forecasting models. In regression applications,
it is common for the target information to auto-reveal after the forecast horizon
has passed. For instance, if we predict stock prices over 24 hours, we will know
the actual value of the stocks after this period. This allows us to feed these actual
prices to the model when we need to provide a forecast for the next horizon.

The lack of labels after model deployment gives the impression that the
QoT task will accumulate errors, providing inaccurate predictions for longer
forecast windows, as would happen if we fed time series forecasting methods with
estimates instead of actual values. However, QoT inherits a pivotal assumption
from quantification: Pte(X|Y) = Ptr(X|Y), i.e., the conditional distribution of
the features given the class remains constant from training to test.

This assumption is reasonable for most applications. In the sentiment analysis
example, P (X|Y) captures the relationship between words and sentiments and
is mostly constant with small changes in the long term as the language evolves.
Under this assumption, the quantifiers can provide relatively accurate prevalence
predictions that will not allow the time series forecaster to drift away from reality.
At the same time, the time series forecaster will provide temporal dependency
to the quantifier, allowing it to improve its predictions.

3 Related Work

Due to the popularity of sentiment analysis for social media and the fact that
social media posts are timestamped, plenty of research papers quantify sentiment
over time. However, these papers fall into two categories: The first uses the
classify and count quantifier without temporal information, and the second uses
the same quantifier with a moving average to smooth the predicted prevalences.

Before reviewing the relevant literature, we should understand why the CC
quantifier is a suboptimal choice despite its popularity in the sentiment analysis
community [18]. Classify and count is a biased quantifier because the classifier
assumes that the training and test samples come from the same underlying
distribution. However, in quantification problems, the class distribution of the
test samples can di!er significantly from the test distribution.

Let us suppose that a binary-class classifier is trained with a balanced dis-
tribution. In this case, when the positive class prevalence increases, the CC
quantifier tends to underestimate the prevalence of the positives. Essentially,
the classifier expects the test samples to have the same class distribution as the
training samples and thus pushes the class estimates towards a 50%/50% esti-
mate. Similarly, when the prevalence of positives decreases, the same quantifier
tends to overestimate its prevalence.

Forman [8,9] provides a formal analysis of the CC quantifier error and shows
that it increases linearly as the test class distribution moves away from the
training distribution. The classifier error, specifically the di!erence between the
true positive and negative rate, defines the error slope.

22 F. Li et al.

Fig. 2. A comparison of the performance of the classify and count (CC) quantifier
with and without moving average (MA). The classifier was trained with a balanced
training set with signals from female Anopheles funestus and Culex quinquefasciatus
mosquitoes. CC underestimates high prevalences and overestimates low prevalences.
CC+MA performs even worse as the moving average operates as a low-pass filter.

Fig. 2 illustrates this issue in a mosquito surveillance dataset. The data repre-
sents the number of Anopheles funestus mosquitoes captured by a mosquito trap
that uses Machine Learning classifiers to recognize the mosquito species based
on data collected from their wing movement. We trained a Machine Learning
classifier with a balanced distribution of mosquitoes, which achieved a respectful
80% accuracy. When test class distribution increases, the CC quantifier under-
estimates the species prevalence. Such underestimation is proportional to the
species prevalence and achieves its highest value for the peak at hour 50. The
opposite occurs when class prevalence decreases, as we can observe at hour 12.

An even worse behavior occurs when we apply a moving average of win-
dow size of 4 hours to the classify and count output. As we will see later in
this section, this is a popular approach in the sentiment analysis community. A
moving average operates as a low-pass filter, providing a smoother sequence of
predictions but worsening the under/over-estimation issue.

In the next two sections, we briefly summarize the relevant literature. Sec-
tion 3.1 focuses on papers that approach the QoT problem using quantifiers only
without incorporating time information. Section 3.2 summarizes the related work
that combines the classify and count quantifier with a moving average.

3.1 QoT with quantification only

The literature contains various studies quantifying sentiments on social platforms
over time and exploring the relations between public opinions online and real-
world events. The vast majority of the relevant papers use the classify and count
quantifier. We believe such a poor design decision can only be explained by a
lack of understanding of the classification and count quantifier’s limitations in
the sentiment analysis community.

Quantification Over Time 23

In what follows, we provide some examples of sentiment analysis papers that
use the classify and count quantifier to solve QoT problems. Bollen et al. [2]
investigate whether measurements of collective mood states derived from large-
scale Twitter feeds correlate to the value of the Dow Jones Industrial Average
(DJIA) over time. Borge-Holthoefer et al. [3] track the public opinion dynamics
about political events in Egypt on Twitter and analyze the motivation of people
switching political polarization. They believe that tracking the relevant change
of proportions of the sentiment index instead of absolute values might diminish
the quantification bias. Lamsal [15] analyzes tweets about COVID-19, aiming to
understand the public opinion patterns related to the ongoing pandemic. Liu et
al. [16] also study the aggregate sentiments on Twitter over time based on an
algorithm related to CC to predict the presidential election. Notably, the authors
claim their trained classifier with an evaluated accuracy of 57%, as it should be
predictably biased when deploying classify and count.

Few papers use a quantifier other than classify and count in QoT applica-
tions. Hopkins and King [10] analyze the impact of political speech incidents on
blog sentiments toward candidates. Aware of the bias of the classify and count
quantifier, they propose ReadMe to quantify sentiments over time. Similarly,
Ceron et al. [4] conducted sentiment analysis on tweets to estimate the distri-
bution flow of citizens’ political preferences. They also use ReadMe, applying
this quantifier across time while disregarding eventual time dependency among
forecasted prevalences.

3.2 QoT with classify and count and moving average

There is abundant literature in sentiment analysis that uses the classify and
count quantifier with moving averages. The moving average can be seen as a
basic time series analysis method that incorporates time dependency to smooth
prevalence forecasts. Overall, the papers summarized in this section employ mov-
ing averages to improve the visualization of trends.

O’Connor et al. [19] argue social media sentiment can serve a role similar
to that of traditional polling and surveys. The authors acknowledge the impact
of misclassification on the estimates generated by the classify and count quan-
tifier. However, they think the occurrence of false positives and negatives would
balance each other out when aggregating the sentiment. Wen et al. [25] use a
3-day sliding window alongside the CC quantifier on sentiment polarity analy-
sis to understand students’ opinions towards the course and course tools. They
also believe that false positives and negatives could potentially o!set each other
during the counting of classified instances.

Both O’Connor et al. [19] and Wen et al. [25] make the incorrect assumption
that the classify and count is potentially an accurate quantifier as the errors
nullifying each other. In fact, if a binary classifier makes the same number of
false positive and negative errors, the quantification can be flawless despite the
imperfection of the classifier [9]. However, as the test class distribution changes,
one type of error may prevail. For instance, a classifier may make the equal
number of false positive and negative misclassifications in a balanced training

24 F. Li et al.

set. However, if the prevalence of positive instances increases to 90% in a test
sample, then the number of false negative misclassifications will surpass the false
positives, causing the classifier to underestimate the positives, as shown in Fig. 2.

In addition, Lai [14] correlates the sentiment trend on Twitter with a tradi-
tional presidential performance poll. The author applies a moving average to the
survey data, which the paper regards as a gold standard for the sentiment trend.
Rani and Kumar [21] focus on sentiment analysis within teaching research. They
propose a system that analyzes student feedback sourced from online platforms
and course surveys. A method similar to moving average, called a mean emotion
vector, is used to smooth the quantified results.

4 Methodology

This section presents our proposed method, Kalman Filter-Moving Average (KF-
MA), for QoT problems. KF-MA is part of a more general framework that we
name the adjustment framework. Such a framework also includes approaches
based on the moving average, popularly employed in the sentiment analysis
literature. We first introduce the framework in Section 4.1 and then introduce
KF-MA in Section 4.2.

4.1 Adjustment Framework

Our framework adjusts class prevalence estimates for a sample St collected at a
time point t by leveraging existing quantifiers and the temporal dependency of
previous prevalence estimates.

𝑆11

3

𝑛

2
Quantifier

ℎ

TS Forecaster
𝑓

Adjustment Framework
ො𝑝𝑡,𝑖 = 𝛼𝑜𝑡,𝑖 + 1 − 𝛼 𝑦𝑡,𝑖

ෝ𝐩𝑡

tim
e

Norm
alization

Observation

Forecast

Estimate

𝑆2

𝑆3

𝑆𝑛

𝑆𝑡

𝑜𝑡,1
𝑜𝑡,2
⋮

𝑜𝑡,𝐿

𝑦𝑡,1
𝑦𝑡,2
⋮

𝑦𝑡,𝐿

ො𝑝𝑡,1
ො𝑝𝑡,2
⋮
ො𝑝𝑡,𝐿

𝐲𝑡

𝐨𝑡

ෝ𝐩𝑡−1
ෝ𝐩𝑡−2

ෝ𝐩𝑡−𝑚

ෝ𝐩1

Fig. 3. A general view of the adjustment framework for QoT, which integrates predic-
tions from a quantifier and a time series forecaster, having inputs from last m estimates.

We use the standard nomenclature of the Probabilistic Graphical Model lit-
erature and name the output of quantifiers as observations. At time point t, we
have an observation ot = [ot,1, ot,2, · · · , ot,L]↑ = h(St) from a quantifier h, be-
ing ot,i the observation corresponding to the estimate of class li’s true prevalence

Quantification Over Time 25

pt,i. Besides, we have a forecast yt = [yt,1, yt,2, · · · , yt,L]↑, where yt,i = f(ω̂t→1)
is the prevalence prediction for class li We integrate these two predictions into
a single value

p̂t,i = ε ot,i + (1↓ ε) f(ω̂t→1) (4)
as the estimate of the true prevalence. For time series forecaster f , a model

that does not require a large-scale training process is preferred. The reason is
that deploying non-trivial time series analysis methods, such as recurrent neuron
networks and autoregression models, requires high cost of data, while manually
labelling enough data for training those methods is cumbersome in QoT tasks
as time series in QoT is di!erent from most that out of streaming data, each
data point of time series in QoT is an aggregated mark over a sample instead of
an instance.

ω̂t→1 is generallized as a representation of historical information. It can be
set to storing either the previous integrated estimates p̂ or previous observation
o, which can be found in the literature and will be discussed in the following
section. In addition, this historical information may encompasses only the last
m observations, where m is a hyperparameter that limits how long the method
can observe from the past.

The p̂t,i are not necessarily normalized in the sense that
∑L

i p̂t,i ↔= 1. We thus
normalize these predictions to turn them into a probability distribution. Fig. 3
illustrates this general approach that we named the adjustment framework.

In the remainder of this text, we simplify the notation by dropping the i

index from symbols such as pt,i, ot,i, and yt,i. The reason is that the methods
in the adjustment framework often work with one class at a time. Therefore,
for a multi-class problem, these methods make L ↓ 1 independent predictions
integrated in the normalization step.

In the remainder of this section, we discuss how the moving average (MA)
approach integrates into our framework. We will use it later as a baseline for com-
parison with our proposed methods. O’Connor et al. [19] was the first to apply
MA to QoT problems. They started with daily sentiment ratios [o1, o2, . . . , on]
of positive and negative tweets obtained with the Classify and Count method
(CC). The authors adjusted each ratio using a m-size window as follows:

p̂t =
1

m
(ot→m+1 + ot→m+2 + . . .+ ot)

=
m↓ 1

m

(ot→m+1 + ot→m+2 + . . .+ ot→1)

m↓ 1
+

1

m
ot (5)

Notice that, as they work with binary-class problems, they can track only
the positive class prevalence and estimate the negative prevalence, as both need
to sum to one.

According to Eq. (4), we have yt = f(om
t) = (ot→m+1+ot→m+2+...+ot→1)

m→1 and
ε = 1

m . Note that, for MA, with a fixed window size m, the weights of prediction
and observation are static, and it primarily presents a retrospective average
without e!ectively capturing trends.

26 F. Li et al.

4.2 KF-MA

Our proposal, Kalman Filter-Moving Average (KF-MA), introduces a dynamic
weighting approach for parameter ε between observations and predictions. KF-
MA uses moving average as a time series forecasting function f and Kalman
filter [13] to the adjustment framework.

Kalman filter [13] is a recursive algorithm for estimating the state of a dy-
namic system. It assumes all uncertainties from the environment, observation
and hidden states are Gaussian distributed.

When using a Kalman filter to estimate a dynamic system with no known
external influence, where the scales of measurement and states are identical, for
state st, there is an observation Ot ↗ N (µot , R), where R is from the i.i.d.1
random error of each measurement. A Kalman filter also models a forecast as
X

↓
t ↗ N (µx↑

t
,ϑx↑

t
), such that:

{
µx↑

t
= F µxt→1

ϑx↑
t
= F ϑxt→1 F

↑ +Qt
(6)

where Xt→1 ↗ N (µxt→1 ,ϑxt→1) is an estimate of st→1, and F is the matrix encap-
sulating the internal transition mechanism of the dynamic system. The transition
covariance Qt represents the uncertain influence of the external environment.

The filter integrates X
↓
t with Ot to have an estimate Xt ↗ N (µxt ,ϑxt) for

st. It is computed as follows:





µxt = µx↑
t
+Kt (µot ↓ µx↑

t
)

ϑxt = (1↓Kt)ϑx↑
t

Kt =
ωx↑

t
ωx↑

t
+R

(7)

where Kt is named Kalman gain.
For a later state st+1, the filter recursively derives a prediction using estimate

Xt of st. Only the estimate of the initial state should be specified manually since
no prior estimates are made. To implement the Kalman filter, specifications for
R, F , Qt, and an initial estimate X0 ↗ N (µx0 ,ϑx0) are required.

Since the forecast of the current state depends solely on the previous state,
it is necessary to reformulate the state to integrate the Kalman filter into the
adjustment framework. In KF-MA, for each class at time t, the forecast yt of
true prevalence pt is modeled as:

yt = f(p̂m
t) = a p̂m

t (8)

where the vector a = [a1, a2, · · · , am], p̂m
t = [p̂t→m, p̂t→m+1, · · · , p̂t→1]

↑. For
time t, define the state as a m ↘ 1 vector p↔

t = [pt→m+1, · · · , pt→1, pt]
↑, hence

we have the estimate Xt ↗ N (p̂↔
t , Pt), in which p̂↔

t = [p̂t→m+1, · · · , p̂t→1, p̂t]
↑,

Pt is the m ↘ m covariance matrix and p̂m
t = p̂↔

t→1. Correspondingly, we have
the forecast X

↓
t ↗ N (y↔

t , P
↓
t) and the observation Ot ↗ N (o↔

t , R). Therefore, we
set the m↘m transition matrix F as:
1 Independent and identically distributed.

Quantification Over Time 27

F =





0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a1(m) a2(m) a3(m) · · · am(m)




(9)

s.t.

y↔
t = F p̂↔

t→1 (10)

Now Eq. (8) is transformed into Eq. (10). KF-MA uses MA for time series
forecasting f , hence aj(m) = 1

m for each in F . R is modeled by the mean
squared error r of the quantifier through validation multiplied by an m ↘ m

identity matrix Im as R = r · Im. Since no former state can be used to update
the initial state covariance, it is initiated by observations and R. Set the time
index starting from 1, the initial state p↔

t = [p1, · · · , pm→1, pm]↑. The initial
estimate is N (o↔

m, R). Similar to other time series forecast algorithms, we cannot
estimate the initial m class prevalence. Hence, the window size m is expected
to be set small, as detailed in Section 5. Assuming a stable outside influence
over time, we denote the transition covariance as Q, which is fine-tuned through
the validation process. Recalling the Eq. 7 and Eq. (4), we can now obtain the
estimate Xt ↗ N (p̂↔

t , Pt) by





p̂↔
t = Kt o↔

t + (1↓Kt)y↔
t

Pt = (1↓Kt)P ↓
t

Kt =
P ↑

t
P ↑

t+R

(11)

in which ε = Kt. For each class at time t, value p̂t = p̂↔
t [m] is the estimate of

its true prevalence. In comparing KF-MA with the moving average, one notable
advantage of KF-MA is its dynamic weights for observations and predictions.
This advantage stems from the recursive updating of the Kalman gain as the
states change over time.

5 Experimental Evaluation

This section outlines the experimental evaluation settings and discusses the re-
sults, focusing on how KF-MA improves quantification accuracy and whether it
outperforms MA. Additionally, we compare KF-MA to the state-of-the-art QoT
methods in the literature.

5.1 Experimental Setup

Implementing a QoT approach involves four main components: a classifier, a
quantifier, a time series forecaster and an adjustment framework. Most existing
quantifiers produce a class prevalence estimate using the scores generated by a

28 F. Li et al.

classifier. The time series forecaster and adjustment framework adjust the output
of the quantifier, improving its performance in the presence of historical data.
To e!ectively evaluate our method, we created a diverse experiment involving
multiple datasets, classifiers, and quantifiers. The objective is to introduce vari-
ations that enable a comprehensive comparison and simulate scenarios in which
users might apply the method across various applications.

Datasets The requirements for datasets include true or hand-coded labels,
timestamp features, and a task that involves counting a time-related topic or
entity. We selected seven datasets meeting the criteria, three of which are textual
data for sentiment classification:

NpSenti Sentiment analysis of COVID-19-related Tweets in Nepali [24].
AppleSenti User sentiments towards Apple company on Twitter2.
GlobalSenti A collection of worldwide Tweets related to COVID-193.

The rationale for choosing these datasets is they represent applications simi-
lar to those discussed in Section 3, specifically in monitoring opinions of partic-
ular topics. In addition to textual datasets, we collected four other datasets for
various applications:

Mosquito A mosquito surveillance dataset to count mosquitoes by species.
Bike An UCI dataset for bike sharing prediction4.
Energy An UCI dataset for predicting energy consumption5.
News An UCI dataset for predicting online news popularity6.

𝑆1 𝑆𝑇𝐷1 𝑆2 𝑆3
time

𝐷2 𝐷𝐼
Dataset

Initialization Phase Testing Phase

Training
set

Quantifier

KF-MA

Classifier

Initialization Phase is to build the
quantifier based on the classifier
and providing reference for hyper
parameter tuning in KF-MA.

Fig. 4. Deployment of quantification over time with KF-MA

2 https://data.world/crowdflower/apple-twitter-sentiment
3 https://www.kaggle.com/datasets/datatattle/covid-19-nlp-text-classification/data
4 https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
5 https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
6 https://archive.ics.uci.edu/dataset/332/online+news+popularity

https://data.world/crowdflower/apple-twitter-sentiment
https://www.kaggle.com/datasets/datatattle/covid-19-nlp-text-classification/data
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
https://archive.ics.uci.edu/dataset/332/online+news+popularity

Quantification Over Time 29

The datasets are preprocessed to align with our evaluation criteria. For each
dataset, instances are assigned to time intervals, such as hours or days, and then
grouped into subsamples based on these intervals.

An initialization process is necessary for training classifiers and quantifiers
when not using pre-trained ones or searching for KF-MA hyperparameters. This
phase uses the first subsamples, as illustrated in Fig. 4. This data serves two
purposes:

1. It is used to train classifiers and quantifiers when not using pre-trained mod-
els and evaluate their performance.

2. It estimates the random error matrix, R, for the Kalman Filter used in KF-
MA. Such a matrix estimation is obtained from the quantifier’s mean squared
error obtained in the initialization data.

The number of samples in the initialization phase, I, must follow the re-
quirements found in practical applications. Large values of I allow us to train
better classifiers and quantifiers and estimate hyperparameters better. However,
large training sets are unavailable for many applications due to the high cost
of labelling data. In our experiments, we used around 15% of the data for ini-
tialization of the non-textual datasets. We used the first 15 time units for the
textual datasets, such as hours or days. After setting I, T samples remain for
testing. The final models are trained in the concatenation of all {Di}Ii=1 as a
single training set. Table 1 summarises the parameters of our experimental setup
for each dataset.

Table 1. Summary of the experimental setup. #Classes is the number of classes. Tr.
Size is the number of instances in the training set after concatenation. I is the number
of time units in the training set. Avg. Size/t is the average number of instances per
sample in the testing sets. T is the number of time units in the training set.

Dataset #Classes Tr. Size I Avg. Size/t T Time Unit

NpSenti 3 233 15 104 320 day
AppleSenti 3 1927 15 104 18 day
GlobalSenti 3 4454 15 1397 29 day
Mosquito 2 958 24 334 312 hour
Bike 2 2634 55 47 273 hour
Energy 3 2880 20 144 103 day
News 2 6943 36 155 185 day

Classifiers and quantifiers We chose to use two pre-trained sentiment clas-
sifiers on the three textual datasets: VADER [11] a lexicon-based sentiment an-
alyzer, and AutoNLP from HuggingFace7, referred as Solanki. We used Logistic
7 https://huggingface.co/amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061

https://huggingface.co/amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061

30 F. Li et al.

Regression and Random Forest classifiers for the other four datasets with default
hyperparameters.

For the quantifiers, we selected Adjusted Classify and Count (ACC) [9], Dis-

tribution y-Similarity (DyS) [17], Generalized Probabilistic ACC (GPACC) [7],
and Energy Distance-y (EDy) [5]. These are popular quantifiers often ranked
among the best performing according to recent empirical studies [22].

ACC adjusts the output of CC using the true positive (tpr) and false pos-

itive rates (fpr) through a validation process on the training set. DyS models
the scores provided by a classifier using histograms. The model searches for a
parameter that minimizes the distance between a mixture of positive and nega-
tive scores from the training set and the unlabelled scores from the test sample.
GPACC is a generalization of ACC for multiclass problems with probabilistic
classifiers. It uses a soft variation of the confusion matrix obtained from the
training set using cross-validation. EDy interprets the dimensional density of
the data as the posterior distribution. This approach allows EDy to extract
more detailed information than GPACC in feature space.

CC, GPACC, and EDy are naturally capable of quantification on multi-class
data, while ACC and DyS are designed for binary data. Therefore, ACC and
DyS are deployed using One versus All (OVA) for multi-class datasets.

Hyperparameters One hyperparameter is the window size m for the time
series forecasting model f . In our experiments, we set m = 4, taking into account
the following factors:

(i) Larger window sizes are wasteful because the recommended model f does
not capture the seasonality patterns; (ii) Covariance decreases as time points
move further apart; and, (iii) Minimizing the number of data points that can
not be adjusted in the initial phase.

In addition to m, the transition matrix Q in the Kalman filter is tuned during
the initialization phase in Fig. 4. Matrix Q is assumed to be a scalar matrix,
similar to the observation covariance R. In our experiments, we perform a ternary
search on Q within the interval

[
10→4

, 10→1
]
.

Evaluation Our evaluation uses the Absolute Error (AE) due its interpretabil-
ity [23]:

AE(p↓ p̂) =
1

L

L∑

i=1

|p(i)↓ p̂(i)| (12)

where p is the true and p̂ the predicted class prevalence. We compute each
sample’s AE and take the mean across all samples, denoted as Mean Absolute

Error (MAE).
With seven datasets, four quantification methods, and two classifiers for each

dataset, we create 56 experimental conditions. Each condition undergoes ten
iterations with di!erent seeds, and the results are averaged to ensure the stability
and reliability of the findings.

Quantification Over Time 31

Table 2. MAE results on textual data for di!erent combinations of datasets, classifiers
and quantifiers.

Quantifier DyS ACC GPACC EDy

Classifier VADER Solanki VADER Solanki VADER Solanki VADER Solanki
Dataset GlobalSenti
QFY 0.0182 0.0590 0.0095 0.0640 0.0310 0.0730 0.0236 0.0620
MA 0.0300 0.0465 0.0280 0.0489 0.0359 0.0637 0.0325 0.0530

KF-MA 0.0156 0.0498 0.0087 0.0483 0.0280 0.0609 0.0208 0.0502

Best Method KF-MA MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA
Dataset NpSenti
QFY 0.1858 0.1712 0.1823 0.1828 0.2075 0.2529 0.1921 0.2575
MA 0.1350 0.1617 0.1505 0.1546 0.1672 0.2434 0.1549 0.2486

KF-MA 0.1354 0.1644 0.1473 0.1609 0.1640 0.2442 0.1527 0.2499

Best Method MA MA KF-MA MA KF-MA MA KF-MA MA
Dataset AppleSenti
QFY 0.1706 0.1289 0.1968 0.1187 0.1518 0.1134 0.1538 0.1146
MA 0.1215 0.0999 0.1688 0.0999 0.1334 0.1018 0.1340 0.1032

KF-MA 0.1128 0.0929 0.1670 0.0935 0.1254 0.0975 0.1269 0.0986

Best Method KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA

5.2 Comparison with QoT approaches in literature

We compare KF-MA to other approaches previously used in related work. From
our knowledge, only three methods have been used for QoT: standalone CC,
CC with moving average, and standalone ReadMe [10]. ReadMe is a quantifica-
tion method specifically designed for textual data. It does not require a trained
classifier as it operates directly on text features. Jerzak et al. [12] recently pro-
posed an improved version of ReadMe, referred to as ReadMe2, which has shown
competitive performance in sentiment quantification tasks. We assess ReadMe2
combined with our proposed method KF-MA, comparing it with CC, CC with
moving average, and standalone Readme2 on the three textual datasets. Other
datasets are not included in this experiment as they do not have the textual data
expected by ReadMe2. Solanki classifier was used in the CC approach. This ex-
periment evaluates if KF-MA improves upon the state-of-the-art approaches.

5.3 Results

We evaluate three QoT methods across 56 experimental conditions: standalone
quantification (QFY), quantification with moving average (MA), and quantifi-
cation with KF-MA (KF-MA). According to the results presented in Table 2
for textual data and Table 3 for numeral data, our proposed method KF-MA
achieved the best performance in most conditions.

32 F. Li et al.

Table 3. MAE results on non-textual datasets for di!erent combinations of datasets,
classifiers and quantifiers. LR represents Logistic Regression classifier and RF repre-
sents Random Forest classifier.

Quantifier DyS ACC GPACC EDy

Classifier LR RF LR RF LR RF LR RF
Dataset Bike
QFY 0.2113 0.2622 0.1780 0.2443 0.1982 0.2648 0.1827 0.2604
MA 0.1916 0.2054 0.1671 0.1886 0.1858 0.2164 0.1726 0.2111

KF-MA 0.1918 0.1971 0.1667 0.1840 0.1885 0.2112 0.1725 0.2049

Best Method MA KF-MA KF-MA KF-MA MA KF-MA KF-MA KF-MA
Dataset Energy
QFY 0.2813 0.2575 0.3294 0.3179 0.3442 0.4378 0.3281 0.4305
MA 0.2285 0.2259 0.3136 0.2531 0.2867 0.3906 0.2769 0.3788

KF-MA 0.2089 0.1858 0.3041 0.1862 0.2611 0.3533 0.2514 0.3297

Best Method KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA
Dataset News
QFY 0.2143 0.2282 0.3253 0.2248 0.2243 0.1981 0.2175 0.2039
MA 0.1694 0.1951 0.2208 0.2177 0.1803 0.1732 0.1735 0.1779

KF-MA 0.1518 0.1772 0.0959 0.2162 0.1597 0.1638 0.1534 0.1680

Best Method KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA
Dataset Mosquito
QFY 0.0399 0.0191 0.0468 0.0223 0.0403 0.0182 0.0404 0.0187
MA 0.0445 0.0411 0.0459 0.0420 0.0440 0.0404 0.0440 0.0406

KF-MA 0.0327 0.0190 0.0348 0.0219 0.0315 0.0178 0.0316 0.0184

Best Method KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA

MA won 8 out of 56, while QFY did not win any. Standalone quantification
methods exhibit varying performances across the seven datasets. However, the
MAE results demonstrate that KF-MA consistently improves the quantification
accuracy of the standalone quantifiers.

Although not as e!ective as KF-MA, the moving average can improve the
quantification accuracy over the standalone quantifiers in certain cases. However,
for datasets such as GlobalSenti and Mosquito, in which standalone quantifiers
underperform, applying a moving average tends to worsen the estimation due
to its nature as a low-pass filter. In contrast, KF-MA provides adaptive filtering
capabilities, which are particularly beneficial when observations are unbiased.

Table 4 shows that KF-MA improves the performance of the state-of-the-
art approach ReadMe2. The quantification results of ReadMe2 with KF-MA
on the three textual datasets show a consistent improvement over all methods
previously applied in the literature.

Quantification Over Time 33

Table 4. MAE results of di!erent QoT methods on three textual datasets.

QoT Method CC CC+MA ReadMe2 ReadMe2+KF-MA

NpSenti 0.2436 0.2465 0.1422 0.1420
GlobalSenti 0.2439 0.2264 0.0766 0.0594
AppleSenti 0.2000 0.1631 0.1182 0.1148

Mean 0.2292 0.2120 0.1123 0.1054

6 Conclusion

In this paper, we introduced the task of quantification over time (QoT), which
is common in various fields, and proposed a method called the Kalman Filter-
Moving Average (KF-MA) approach. Additionally, we propose a framework that
accommodates both KF-MA and MA approaches. MA is a popular approach in
the literature for adjusting the output of standalone quantifiers in QoT.

We evaluated our method through experiments under various combinations
of datasets, quantifiers and classifiers, comparing them with state-of-the-art ap-
proaches. The results demonstrate that using time dependency enhances the
performance of quantifiers in QoT problems. Our work provides practitioners
with an accurate tool and o!ers fundamental guidelines and ideas to researchers
interested in developing novel algorithms targeted at quantification over time.

In future work, we intend to develop and integrate more sophisticated ap-
proaches for time series forecasting that can learn from small quantities of data.
One potential approach is the use of Gaussian Processes. We also intend to
use multidimensional time series forecasters, using the dependencies among the
class’s prevalence to improve our results.

References

1. Belcastro, L., Branda, F., Cantini, R., Marozzo, F., Talia, D., Trunfio, P.: Analyzing
voter behavior on social media during the 2020 us presidential election campaign.
Social Network Analysis and Mining 12(1), 83 (2022)

2. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of
computational science 2(1), 1–8 (2011)

3. Borge-Holthoefer, J., Magdy, W., Darwish, K., Weber, I.: Content and network
dynamics behind Egyptian political polarization on Twitter. In: Proceedings of
the 18th ACM Conference on Computer Supported Cooperative Work & Social
Computing. pp. 700–711 (2015)

4. Ceron, A., Curini, L., Iacus, S.M., Porro, G.: Every tweet counts? How sentiment
analysis of social media can improve our knowledge of citizens’ political preferences
with an application to Italy and France. New media & society 16(2), 340–358
(2014)

5. del Coz, J.J.: Unioviedo (team2) at Lequa 2022: comparison of traditional quanti-
fiers and a new method based on energy distance. In: Working Notes of the 2022
Conference and Labs of the Evaluation Forum (CLEF 2022), Bologna, IT (2022)

34 F. Li et al.

6. De Nadai, B., Maletzke, A., Corbi, J., Batista, G., Reiskind, M.: The impact
of body size on Aedes [stegomyia] aegypti wingbeat frequency: implications for
mosquito identification. Medical and Veterinary Entomology 35(4), 617–624 (2021)

7. Firat, A.: Unified framework for quantification. arXiv preprint arXiv:1606.00868
(2016)

8. Forman, G.: Counting positives accurately despite inaccurate classification. In:
European conference on machine learning. pp. 564–575. Springer (2005)

9. Forman, G.: Quantifying counts and costs via classification. Data Mining and
Knowledge Discovery 17, 164–206 (2008)

10. Hopkins, D.J., King, G.: A method of automated nonparametric content analysis
for social science. American Journal of Political Science 54(1), 229–247 (2010)

11. Hutto, C., Gilbert, E.: Vader: A parsimonious rule-based model for sentiment anal-
ysis of social media text. In: Proceedings of the international AAAI conference on
web and social media. vol. 8, pp. 216–225 (2014)

12. Jerzak, C.T., King, G., Strezhnev, A.: An improved method of automated nonpara-
metric content analysis for social science. Political Analysis 31(1), 42–58 (2023)

13. Kalman, R.E.: A new approach to linear filtering and prediction problems (1960)
14. Lai, P.: Extracting strong sentiment trends from Twitter. https://nlp.stanford.edu/

courses/cs224n/2011/reports/patlai.pdf (2010)
15. Lamsal, R.: Design and analysis of a large-scale COVID-19 tweets dataset. applied

intelligence 51, 2790–2804 (2021)
16. Liu, R., Yao, X., Guo, C., Wei, X.: Can we forecast presidential election using Twit-

ter data? an integrative modelling approach. Annals of GIS 27(1), 43–56 (2021)
17. Maletzke, A., dos Reis, D., Cherman, E., Batista, G.: DyS: A framework for mixture

models in quantification. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 4552–4560 (2019)

18. Moreo, A., Sebastiani, F.: Tweet sentiment quantification: An experimental re-
evaluation. Plos one 17(9), e0263449 (2022)

19. O’Connor, B., Balasubramanyan, R., Routledge, B., Smith, N.: From tweets to
polls: Linking text sentiment to public opinion time series. In: Proceedings of the
international AAAI conference on web and social media. vol. 4, pp. 122–129 (2010)

20. Parmezan, A.R., Souza, V.M., Seth, A., "liobaitė, I., Batista, G.E.: Hierarchical
classification of pollinating flying insects under changing environments. Ecological
Informatics 70, 101751 (2022)

21. Rani, S., Kumar, P.: A sentiment analysis system to improve teaching and learning.
Computer 50(5), 36–43 (2017)

22. Schumacher, T., Strohmaier, M., Lemmerich, F.: A comparative evaluation of quan-
tification methods. arXiv preprint arXiv:2103.03223 (2021)

23. Sebastiani, F.: Evaluation measures for quantification: An axiomatic approach.
Information Retrieval Journal 23(3), 255–288 (2020)

24. Sitaula, C., Basnet, A., Mainali, A., Shahi, T.B., et al.: Deep learning-based meth-
ods for sentiment analysis on Nepali COVID-19-related tweets. Computational
Intelligence and Neuroscience 2021 (2021)

25. Wen, M., Yang, D., Rose, C.: Sentiment analysis in MOOC discussion forums:
What does it tell us? In: Educational data mining 2014. Citeseer (2014)

26. Yaqub, U., Chun, S.A., Atluri, V., Vaidya, J.: Analysis of political discourse on
Twitter in the context of the 2016 us presidential elections. Government Informa-
tion Quarterly 34(4), 613–626 (2017)

https://nlp.stanford.edu/courses/cs224n/2011/reports/patlai.pdf
https://nlp.stanford.edu/courses/cs224n/2011/reports/patlai.pdf

