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Abstract. We compared the continuous sweep quantifier with median
sweep, SLD, and DyS using Task T1 of the LeQua2024 competition data.
We fitted 100 di!erent underlying support vector machines and evaluated
all quantifiers on all models. Continuous sweep is outperformed by SLD
and DyS if a well-performing underlying classifier exists. Using worse
quantifiers, continuous sweep and median sweep appeared to be more
stable than DyS and SLD. We compared these findings with existing
results in quantification literature.

1 Introduction

Quantification Learning is a task that is focused on predicting the prevalence
of a data set rather than individually labelling each observation [1, 2]. In earlier
years, quantification has been a side product of classification, but over the last
decades, quantification learning has been developed to a standalone field with
sophisticated tasks and methods. One of those tasks are the LeQua competitions
which are designed to evaluate and compare quantifiers with each other. The
LeQua competitions contains various tasks regarding quantification learning [3].
In this paper, we focus on task T1 of the LeQua2024 competition. This task
concerns binary quantifiers from which the data is a!ected by prior-probability
shift.

In this paper, we compare the continuous sweep quantifier with median
sweep, SLD, and DyS. All quantifiers use a support vector machine with a radial
basis function as an underlying classifier. We not only investigate the raw perfor-
mance of the quantifiers, but also investigate the relationship with the underlying
classifiers. We finalize the paper with a discussion about the competition and a
generalization to other studies.

2 Methods

In this study, we compare our four quantifiers. These four quantifiers need an
underlying classifier to compute probabilities for each observation. In this sec-
tion, we explain how we computed the underlying classifier and elaborate on the



80 Kevin Kloos

four quantifiers. Extra emphasis is put on the Continuous Sweep quantifier, be-
cause the author of this paper is one of the developers of Continuous Sweep and
it is the most unknown quantifier out of the four. Moreover, we submitted the
prevalences extracted from Continuous Sweep to the LeQua2024 competition.

Underlying classifier The underlying classifier of all quantifiers is a support
vector machine using a radial basis function. Using the kernlab package sup-
ported by the Tidymodels library [4], we can tune this support vector machine
with two hyperparameters: the cost (C) and the radial basis function sigma (ω).
Moreover, the data is preprocessed by normalizing all predictor variables. A max
entropy grid is used to find 100 pairs of hyperparameters that optimally cover
the hyperparameterspace. We therefore fit 100 SVMs with di!erent hyperpa-
rameters. Using the SVM, we can predict the probabilties of observations that
belong to the positive class. With 5-fold cross validation, we also estimate the
probabilties of all observations in the training data, which will be used to fit the
quantifiers.

Median Sweep (MS) Median sweep is an ensemble quantifier in the group
Classify, Count, and Correct [5]. First, we use the SVM to compute probabil-
ities of all observations in the test data. Accordingly, we compute an adjusted
count estimate for every probability that occurs in the test data. The adjusted
count estimates are computed using true and false positive rate estimated by the
cross validated probabilities from the training data. Consequently, we discard
unreliable estimates, that is, every adjusted count estimate where the di!erence
between the true and false positive rates are smaller than 0.25. Finally, we com-
pute the median of the remaining adjusted count estimates as our median sweep
prevalence estimate.

Continuous Sweep (CS) Continuous sweep is a quantifier that is similar to
median sweep [6]. More details of Continuous Sweep can be found in [6], but
we provide a short explanation of the method. Continuous sweep and median
sweep are di!erent in two characteristics. First, continuous sweep uses continuous
functions to estimate the true and false positive rates. In this task, we used the
kernel cumulative density function from R’s ks package to compute the true
and false positive rates with the cross-validated training data. The continuous
functions of the true and false positive functions enabled us to integrate the
adjusted count estimates with respect to the estimated probabilities. Therefore,
the second change is that we compute the mean of all adjusted count estimates
using integration, instead of computing the median. Moreover, we were able to
improve the procedure of discarding unreliable adjusted count estimates. We
derived derivations for the bias and variance of continuous sweep which enabled
us to optimize the value of the minimal di!erence between true and false positive
rates (i.e., pω) that an adjusted count estimate is determined as ”reliable”. The
reliable prevalence estimates are located between εl and εr. The final continuous
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sweep estimate is the mean area under the curve of the adjusted count function
between εl and εr.

SLD The SLD algorithm is a expectation maximization approach to the quan-
tification task [7]. The prevalence of the training data is used as a starting point
to update the test prevalence iteratively by an optimal Bayes classifier until con-
vergence is reached. The stopping criterium is a prevalence di!erence of 0.0001
between two updates or a maximum of 1000 iterations.

DyS The DyS algorithm is algorithm that matches histograms to find the preva-
lence of a test set [8]. First, the cross validated probabilities of the training set
are used to construct histograms of the probabilities in the positive and negative
class. Moreover, the probabilities of the test set are used to make a histogram for
the test data. Using a tenary search, we aim to find the optimal mixture between
the positive and negative class probabilities to match the test histogram as good
as possible. The measure we used to describe the di!erence between histogram
is the hellinger distance. Moreover, default values of 8 bins are used to construct
the histograms and a the stopping criterium is a prevalence di!erence of 0.0001
between two updates.

3 Results

We fitted 100 di!erent SVM-RBF models with di!erent hyperparameters using
a max entropy grid. Out of these 100 models, 76 converged. We compared the
performance of the four quantifiers with 1) their best MAE overall, and 2) using
the model with the lowest ROC-AUC. From Table 1, we see that SLD has the
lowest MAE out of the four models in the two scenarios. Moreover, the di!erences
between the minimum MAE with the MAE of the model with the lowest ROC-
AUC are small across the quantifiers.

We also compared the performance of the classifiers against their quantifi-
cation performance, both within as between quantifiers. For all 76 converged
models, we evaluated the ROC-AUC of the classifier against the cross-validated
probabilities from the training data and we computed the MAE of all four quanti-
fiers on each of the models. Two models had a ROC lower than 0.8, which means
that those models perform very bad compared to the other models. Those two
models are excluded from the illustrations. In Figure 1, we see that the best
classifiers are embraced by all quantifiers. SLD and DyS perform better than CS
and MS using the best classifiers. However, these two quantfiers are less stable
if the classifiers perform worse. For a ROC-AUC around [0.90→ 0.92], SLD had
a remarkable drop in performance. Moreover, out of the 76 converged models,
SLD had a MAE lower than 0.05 for 22 models, whereas DyS, MS, and CS
had a MAE lower than 0.05 for 47, 45, and 44 respectively. For classifier with
a low ROC-AUC, CS and MS outperformed SLD and DyS, but the MAE’s re-
spectively are fairly high compared to the good classifiers. Moreover, we extract
from Figure 1 that DyS performed either good or very bad for worse classifiers.
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Table 1. The MAE of four quantifiers evaluated on 1000 development sets. At the
top, the lowest MAE of every quantifier across all models. At the bottom, the MAE of
every quantifier based on the largest ROC-AUC. The columns of the table denote the
quantifier, the model number, the cost hyperparameter (C), the rbf sigma hyperpa-
rameter (ω), the ROC-AUC metric of the model, and the MAE of the quantifier given
the classifier.

Quantifier Model no. C ω ROC-AUC MAE
Continuous Sweep 77 4.436 3.28→ 10→4 0.9177 0.0241
Median Sweep 74 0.236 3.68→ 10→3 0.9099 0.0267
SLD 77 4.436 3.28→ 10→4 0.9177 0.0205
DyS 77 4.436 3.28→ 10→4 0.9177 0.0223
Continuous Sweep 78 25.1 4.45→ 10→4 0.9198 0.0246
Median Sweep 78 25.1 4.45→ 10→4 0.9198 0.0291
SLD 78 25.1 4.45→ 10→4 0.9198 0.0209
DyS 78 25.1 4.45→ 10→4 0.9198 0.0224
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Fig. 1. Plot that compares the MAE of he four quantifiers against the ROC-AUC. On
the left, we compare the MAE against the ROC-AUC in general for all models. On the
left, we compare the di!erence between the MAE of the displayed quantifier against
Continuous Sweep, where a value higher than zero indicates a higher MAE for the
respective quantifier.
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4 Discussion

Our quantifier, Continuous Sweep, underperforms against good baseline quanti-
fiers like SLD and DyS in the LeQua2024 competition. If a good classifier can be
obtained from the training data, SLD and DyS performed well. Similar results
have been found in the previous LeQua2022 competition, where DyS and SLD
were good baseline classifiers [3]. If the underlying classifier performs worse, the
ensemble methods such as Continuous Sweep and Median Sweep had a lower
performance drop than, and outperformed, SLD and DyS. These findings could
be translated to the elaborative comparison of [9], where median sweep generally
outperformed SLD and DyS for datasets with a binary target variable. These
datasets used were usually much smaller than the datasets of the LeQua com-
petitions. Whereas the LeQua competition contained a training set of 5000 ob-
servations with 1000 development sets containing 250 observations, the datasets
used in [9] were smaller baseline UCI or Kaggle datasets only splitted into a
training and a test set.

In future research, it could be interesting to investigate the performance of
quantifiers when it is di”cult to construct a good (probabilistic) classifier. More-
over, it could be interesting to investigate whether some decision rules could be
developed to choose a suitable quantifier based on the characteristics of an un-
derlying classifier. For example, if one has an excellent classifier, we could safely
apply SLD, whereas a worse classifier might be better used by a quantifier like
continuous sweep. Last, it might also be interesting to investigate the perfor-
mance of direct learners when it is di”cult to construct a good classifier.
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