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Abstract. We advocate that no single quantifier consistently outper-
forms all others across every possible scenario. We also argue that ex-
perimental evaluation in quantification using the Artificial-Prevalence
Protocol is significantly more costly than in classification. Although the
community has made strides in reducing the number of algorithms to
be tested in classification scenarios, this challenge in quantification re-
mains unexplored. To address this issue, we introduce a method that
recommends quantifiers for each dataset, leveraging the concept of meta-
learning. By analyzing the intrinsic characteristics of datasets through
meta-features, our method predicts the most suitable quantification al-
gorithm likely to yield optimal results. Our proposal automates the selec-
tion process, providing data-driven recommendations that enhance the
e!ciency and e"ectiveness of quantification tasks. We achieved a rec-
ommendation accuracy of 83%, meaning that our system successfully
identified the optimal quantifier for 83 out of 100 datasets. Furthermore,
our architecture enables us to build an ensemble of quantifiers using,
for instance, the recommended Top-k quantifiers. Our ensembles lead to
superior quantification results compared to other state-of-the-art quan-
tifiers, such as DyS, SORD, and MS.
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1 Introduction

Meta-learning (MtL)-based recommendation systems can be a viable solution
to automatically select data-driven algorithms using knowledge extracted from
previous tasks [25]. Meta-learning systems indicate which algorithm should be
utilized to achieve the best possible results for each task, according to its par-
ticularities [6]. However, for recommendations to be made, this system needs
to acquire experience, for example, from (i) model evaluations, which involve
recommending hyperparameter values, configuration search spaces, and opti-
mization approaches for analogous tasks; (ii) previously successful models using
transfer learning; and (iii) exploring task properties to recommend algorithms
based on data characterization and learning performance [25].

Exploring meta-learning for building recommendation systems has been in-
vestigated over the years. For example, Ali & Smith [4] used accuracy and com-
plexity measures to build a classifier recommendation system. In [1], the authors
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also used meta-learning to recommend image segmentation algorithms, and in
[24], meta-learning was used to recommend clustering algorithms. Meta-learning
as a tool for selecting machine learning algorithms has shown great promise in
various machine learning tasks [21,12,23].

Recently, a novel supervised task known as quantification has garnered signif-
icant interest from the machine learning community. The task aims to accurately
determine the prevalence of each class within an unlabeled dataset. A key dis-
tinction between quantification and classification is that the class distribution
in quantification is not fixed. Otherwise, it could easily predict the class propor-
tions in the test set based on the training set. Several quantification algorithms
have been proposed in the last decade. However, compared to the classification
task, quantification has a significantly smaller number of methods. In contrast,
quantification experiments are more expensive than classification, requiring sev-
eral test sets with di!erent class distributions. Consequently, determining the
most suitable method for a new problem can be expensive and time consuming.
Previous studies have dedicated e!orts to evaluate the performance of several
quantifiers under di!erent conditions [20,16,27,14]

We advocate that no single quantifier consistently outperforms all others
across every possible scenario. This variability in performance requires a tailored
approach to selecting the most appropriate quantifier for each dataset. We also
argue that experimental evaluation in quantification is massively more costly
than classification. Although the community has delivered proposals to reduce
the number of algorithms to be experimented within classification scenarios, this
challenge in quantification remains unexplored.

Investigating a meta-learning strategy to develop recommendation systems
for quantification algorithms is still uncharted territory. To address this chal-
lenge, we suggest quantifiers for each dataset using meta-learning principles.
By examining the inherent properties of datasets through meta-features, our
method forecasts the most appropriate quantification algorithm expected to de-
liver optimal outcomes. This approach automates the selection procedure, o!er-
ing data-driven recommendations that improve the e"ciency and e!ectiveness
of quantification activities.

The structure of this article is as follows: Section 2 describes the basic con-
cepts and di!erences between the classification and quantification tasks as well
as the algorithm recommendation task formalization, including meta-learning
concepts. Section 3 reviews the literature on related works. Sections 4 and 5
present our meta-learning architecture for recommending quantifiers and the
experimental setup of this paper, respectively. Section 6 presents the empiri-
cal results and discussion. Finally, Section 7 concludes this work and present
directions for future work.

2 Background

In machine learning, classification assigns one or more classes to a set of in-
dividual data items. To achieve this, a learner h is used to generalize a hy-
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pothesis from a training set T = {(x1, y1), . . . , (xn, yn)} of length n, in which
xi → X = {ai1, . . . , aim} represents a vector with m attributes in the feature
space X and yi → Y = {c1, . . . , cw} represents a label in the w-label space Y.
The hypothesis aims to cover the available training examples and future unseen
examples. In this paper, we focus on binary problems, i.e., the label space Y
is restricted to Y = {↑,↓}. Therefore, a classifier is a function that maps an
instance of X to a subset of Y as follows h : X ↔ {↑,↓}.

Many classification algorithms generate scores as an intermediate step in
deciding which class is assigned to an instance [9]. In binary classification, it
su"ces to consider the score for only one of the classes, such as the score for the
positive class. A scorer s(xi) is a function that maps each instance xi to a value
correlating to P(yi = ↑|xi) as the following equation s : xi ↔ R [17]. Therefore,
a classifier is subsequently achieved by applying a threshold to the score values,
categorizing them as positive or negative.

Over the years, algorithms to build data-driven models have been proposed,
resulting in a large number of options. For instance, both h and s are models
induced by some machine learning algorithm based on a dataset. Selecting the
most appropriate method to fit h and s for a dataset can be laborious. This
fact has inaugurated a new research field that aims to recommend algorithms
based on data features. One approach is to develop an automated system for
recommending algorithms, which relies on the relationship between algorithm
performance and dataset characteristics to suggest suitable algorithms directly.

Let S = {S1,S2, . . . ,SM} represents a set of M datasets across various do-
mains and A = {A1,A2, . . . ,AN } a set of N candidate algorithms for proper
induction of h and s along with a model quality measure ω. An algorithm rec-
ommendation for a given Sd can be defined as follows:

Recommender(Sd) = arg max
Ar→A

ω(Sd,Ar)

where arg maxAr→A selects the algorithm Ar that maximizes the quality mea-
sure ω for the dataset Sd.

The selection of quality measures is intrinsically related to the specific nature
of the problem and the task at hand. For instance, accuracy is typically employed
as a quality metric in classification tasks, while Mean Absolute Error (MAE) is
conventionally utilized in regression tasks.

2.1 Quantification

Classification aims at assigning one or more classes to each instance from a
distribution. Nevertheless, in many cases, the primary objective is to estimate
the proportion of each class in the test set rather than to label individual data
points. In such applications, predictions of samples matter more than individual
instances. This distinction highlights the di!erence between classification and
quantification.

A quantifier is a predictive model q induced from a dataset to predict the
class distribution of an unlabeled set, defined according to the following equation:
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q : 2
X ↔ [0, 1]

where, 2X represents the power set of X and q outputs a single number in the
interval [0, 1] that correlates to the positive class prevalence.

An important distinction between quantification and classification lies in the
non-stationarity of class distributions found in quantification problems. Other-
wise, it would be trivial to predict the class proportions in the test set based
on the distribution in the training set. Consequently, the most straightforward
quantifier, called Classify and Count (CC), which involves classifying each in-
stance and then counting how many of them belong to each class does not match
in this context, su!ering from the systemic error introduced when the class dis-
tribution varies. Numerous techniques have been suggested by the quantification
community to address this issue. One of the first is the Adjusted Classify and
Count (ACC), which corrects the bias in CC by adopting a correction factor
based on the model’s true positive rate (tpr) and false positive rate (fpr).

ACC provides perfect quantification results regardless of the classifier accu-
racy when precises tpr and fpr are provided. However, data scarcity and class
imbalance make estimating these statistics challenging. The symbiosis between
classification and quantification extends far beyond CC and ACC. The quan-
tification community has proposed numerous methods, most of which rely on
binary classifiers that produce a score representing the confidence in a positive
classification as an intermediate step for quantification. González et al. (2017)
[13] provide a comprehensive survey of quantification methods, structuring them
into a taxonomy of three groups:
i. Classify, Count, and Correct: methods that classify each instance and sub-

sequently count the examples that belong to each class. This group also
includes methods that apply a correction factor to these counts, including
techniques that account for classification error;

ii. Adaptation of classification algorithms: approaches that modify the mechan-
ics of classification algorithms to transform them into quantifiers;

iii. Distribution matching: methods that model the training data distribution,
typically represented by P (x|y), varying P (y), and then seek parameters
that best match the test data distributions.

Table 1 briefly presents some of the most known and utilized quantifiers in
the literature. The last column provides the corresponding reference for each
method. All methods, except those in the group ii, require a preliminary step of
learning a classifier capable of predicting a score for each unlabeled test instance.
A score is a numerical value that correlates with the posterior probability of
a particular class, i.e., P (↑|x) for binary problems. Various machine learning
algorithms can be used to obtain a scorer, removing the decision threshold step.
However, selecting the best scorer does not guarantee the best quantifier, as the
premise Ptraining(y) = Ptest(y) cannot be held in quantification scenarios.

Selecting the best quantifier is highly dependent on the specific character-
istics of each dataset, requiring performing extensive experiments using, for in-
stance, the Artificial-Prevalence Protocol (APP) [10]. APP is the most commonly
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Table 1: Quantifiers evaluated.
Taxonomy Quantifier Acronym ReferenceGroup

i

Classify and Count CC [10]Adjust Classify and Count ACC
Probabilistic Classify PCC [5]Probabilistic Adjust Classify and Count PACC
Threshold Selection Method

[11]

Set the decision threshold where (1 ↑ tpr) = fpr X
Set the decision threshold where tpr↑ fpr MAXis maximized
Estimate tpr and fpr for several thresholds, MSreturning the median of them

ii Quantification Trees QT [22]

iii

Expectation Maximization Quantification EMQ [26]
Distribution matching with Hellinger Distance HDy [15]
Mixture Model Framework DyS [19]
Sample Mean Matching SMM [16]
Sample-ORD Method SORD [19]

employed experimental framework for evaluating and contrasting quantification
techniques. For binary problems, APP generates several test sets, sub-sampling
examples randomly from ↑ or ↓ with predetermined class distributions. Com-
monly, test sets are generated varying the class distribution across a wide range
of possibilities, such as p = P (↑) → {0, .01, .02, . . . , .99, 1}. APP entails a proba-
bilistic decision, making it susceptible to random variability. Consequently, many
researchers opt to replicate this experiment to minimize variance. This procedure
leads to an assessment over a large number of test sets [17].

Meta-learning emerges as a valuable tool, leveraging prior knowledge and
experience from multiple learning tasks to guide quantifier selection. By ana-
lyzing the properties of datasets and their interactions with various quantifiers,
meta-learning can identify patterns and correlations that are not immediately
apparent. This enables the development of recommendation systems that pre-
dict the most suitable quantifiers or a group of quantifiers for a given dataset.
According to Garcia et al. (2018) [12], meta-learning can help di!erentiate the
performance of a set of machine learning methods, aiding in the selection of the
best method for a given problem.

2.2 Meta-learning

Meta-learning aims to automate selecting, tuning, and combining machine learn-
ing algorithms to improve overall performance across a wide range of tasks [3].
To achieve this, past experiences are utilized to learn from the learning process
itself, a concept known as learning to learn.

Meta-learning-based recommendation systems feature automatic technique
selection driven by data, utilizing knowledge extracted from previous tasks [6].
According to Rivolli et al. (2022) [25], MtL incorporates the following compo-
nents: the problem space (S), the feature space (F), the machine learning algo-
rithm space (A), the performance space (E), and the machine learning algorithm
used for MtL. Therefore, through a data-driven process, the performance (E) of
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a set of algorithms (A) on various datasets (S) is associated with characteristics
of these datasets (F), represented by meta-features. Thus, a machine learning
model is induced from the meta-data, represented by F , recommending the most
suitable machine learning algorithm from A for a new dataset.

Meta-features must be tailored to the problem at hand, being able to charac-
terize the problem aiming to induce an e!ective recommendation model. Existing
an assorted strategies for constructing meta-features. Rivolli et al. (2022) [25]
propose organizing these strategies into six groups as follows:

– Simple: measures that are easily determined and generally do not require
high computational e!ort. Commonly referred to as general metrics, includ-
ing the number of dataset instances and the number of attributes.

– Statistical: these measures capture statistical properties from a dataset,
such as mean, standard deviation, correlation, skewness, and kurtosis.

– Information Theory: these measures explore information theory concepts
to describe a dataset. These metrics rely on entropy, quantifying the infor-
mation content and complexity within the data.

– Model-Based: these measures are extracted from a fitted model learned
on the training data. Although these measures can be extracted from dif-
ferent sorts of models, typically, they are derived from decision tree models,
including the count of leaves, nodes, and the structure of the decision tree.

– Landmarking: these measures are based on the performance of fast and
simple learning systems and algorithms to characterize a dataset. These al-
gorithms should exhibit di!erent inductive biases and be able to capture
relevant information at a low computational cost.

– Others: represent measures that do not fit into any of the previous groups,
generally including domain-related concepts and time-related measures.

Constructing a recommender system with meta-features involves multiple
stages. Firstly, meta-features are selected and extracted from a diverse set of
datasets, creating a meta-dataset where each instance represents a dataset. After
that, a performance metric for each recommendable algorithm is estimated and
included in the meta-table. A meta-learner is then trained on this meta-dataset
to predict the performance of di!erent algorithms based on the meta-features.
Finally, when a new dataset arrives, the meta-features are extracted and input
into the trained meta-learner, predicting the best-performing algorithm.

3 Related Works

Meta-learning has been e!ectively used to develop recommender systems across
various domains. Wang et al. [30] and Zhang et al. (2019) [31] created systems
that recommend feature selection and imbalance learning methods, respectively,
by associating dataset meta-features with algorithm performance in a meta-
table. Similarly, das Dôres et al. (2016) [8] proposed a framework for recommend-
ing software fault prediction algorithms, while Garcia et al. (2018) [12] focused
on recommending classifiers by predicting their accuracy using data complexity
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measures. Zhu et al. (2018) [32] introduced a novel approach by applying link
prediction in a network of datasets and classifiers to recommend appropriate
classifiers. These studies demonstrate the broad applicability of meta-learning
in building recommendation systems, with various frameworks proposed for dif-
ferent tasks [24,1,4].

In the last decade, quantification methods have been proposed to address var-
ious challenges in machine learning tasks. This rapid development has led to a
diverse landscape of techniques, each with unique strengths and weaknesses tai-
lored to specific types of data and problem scenarios. While this variety enriches
the field, it also introduces a significant challenge: selecting the most suitable
quantification method for a given problem has become increasingly complex.

To address this challenge, we propose a novel framework for recommend-
ing quantifiers based on meta-features. To the best of our knowledge, the task
of recommending quantifiers has not been explored previously. Our approach
leverages the wealth of existing quantification methods and automates the selec-
tion process by using meta-features to characterize datasets. These meta-features
capture essential properties of the data, enabling the system to predict which
quantifiers are likely to perform best.

4 Architecture for Recommending Quantifiers

In this section, we introduce a novel method that recommends quantifiers for each
dataset by leveraging the concept of meta-learning. By analyzing the intrinsic
characteristics of datasets through meta-features, our approach predicts the most
suitable quantification algorithm likely to yield optimal results. This proposal
automates the selection process, providing data-driven recommendations that
enhance the e"ciency and e!ectiveness of quantification tasks.

Initially, we extract meta-features from various datasets to capture their char-
acteristics. Then, we estimate the performance of several quantifiers on these
datasets using APP. After that, the extracted meta-features and performance
metrics are unified to build the meta-table that serves, in the next step, to fit a
recommender model. Finally, when a new and unseen dataset arrives, we extract
its meta-features, providing them to the recommender that predicts the most
appropriate quantifier. Figure 1 shows the architecture of our proposal.

Inspired by the literature on meta-learning recommendation, our proposal
involves the following steps: (1) meta-features extraction, (2) meta-target esti-
mation, (3) meta-learner induction, and (4) quantifier recommendation.

Step 1 - Meta-features extraction: for each dataset, meta-features are de-
rived, resulting in a meta-instance within the meta-table. These meta-features
encapsulate diverse attributes of the datasets, including statistical proper-
ties, information-theoretic metrics, and model-based characteristics. Conse-
quently, each meta-instance in the meta-table o!ers a thorough summary of
a dataset’s principal features, aiding the recommender system in determin-
ing the most appropriate quantification algorithms for new datasets based
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Fig. 1: Architecture for quantifiers recommendation.

on their meta-features. Figure 2 shows the intuition of the meta-feature ex-
traction process.
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Fig. 2: Meta-features extraction process.

Both quantification and classification are supervised tasks that can explore
diverse types of meta-features, i.e., supervised and nonsupervised meta-
features. In our architecture, we use the following groups of meta-features:
simple, statistical, information-theoretic, model-based, and landmarking.
The number of meta-features extracted varies across datasets. To standardize
the meta-dataset, since instances cannot have di!erent numbers of attributes,
the features values are aggregated by the mean value for each feature, ensur-
ing all feature sets have the same number of elements. Additionally, the range
of the meta-features can vary significantly between datasets. To address this,
the resulting meta-table can be normalized via min-max scaling.

Step 2 - Meta-target estimation: to build a recommendation model, the tar-
get attribute (or class) must be added to the meta-table, indicating, for ex-
ample, which algorithm is most suitable for each dataset. For classification
problems, the meta-target represents the performance of the classification
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algorithm such as accuracy or F-score [25]. In the context of quantification,
classification metrics are unsuitable. In contrast, in quantification, the per-
formance is based on the ability of minimizing the di!erence between true
(P (ci)) and predicted (P̂ (ci)) class distribution for a set of classes Y. Various
measures for quantifier evaluation have been adapted from other contexts,
such as Mean Absolute Error and Kullback-Leibler Divergence [28]. We use
MAE as the meta-target in our architecture. Figure 3 illustrates the process
of meta-target estimation.

Meta-Table

Samples randomly 
extracted from the 
test set varying class 
distribution

Artificial-prevalence protocol (APP)

Quantification 
algorithms
A1,	…,	AN

...

Training 
set

...

Set of M datasets
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S2
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Error
Test 
set

Meta-Target

MF1 ... MFn Target

...

...

... ...

...A1

AN

Each
dataset is
processed
via the
APP

MF1 ... MFn Target

... ...... ...

Fig. 3: Meta-target estimation using Artificial-Prevalence Protocol.

Evaluating a quantifier requires providing a sample of instances and varying
the class distribution instead of a set of instances, as in the classification
setup. We use the Artificial-Prevalence Procotol, which splits the dataset
into training and test sets and then extracts several batches varying the
class distribution from the test partition.

Step 3 - Meta-learner induction: from the meta-tables built in the previous
step, we learn several regressors, one for each meta-table. These regressors
serve as recommenders for an unknown dataset. Figure 4 illustrates the pro-
cedure that leads to the creation of a collection of meta-learners (regressors).

Meta-Table

Machine learning 
algorithm

MLA1

MLA2

MLAN

MF1 ... MFn Target

...

...

... ...

...A1

AN

MF1 ... MFn Target

... ...... ...

...
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In the previous 
step, a meta-
table for each 
quantifier was 
learned. 
Consequently, in 
this step, each 
meta-table will 
generate a meta-
learner 

Fig. 4: Meta-learner induction step.

Step 4 - Quantifier recommendation: once the meta-learners are trained,
the system can recommend suitable quantification algorithms for new datasets.
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When a new dataset is presented, its meta-features are extracted and used
as input to the trained meta-learners. Each meta-learner provides a predic-
tion of the expected performance (in terms of MAE) for its corresponding
quantifier. Figure 5 shows the recommendation process using meta-learners
to predict the best quantifier for a new dataset. In order to enhance the

MLA1

MLA2

MLAN

...

Set of 
Meta-learners

New dataset

MF1 ... MFnMeta-Features
Extraction

Target

0.023

0.015

0.043

The simplest
recommender
scheme consists
of recommending
the meta-learner
that predicts the
lowest value. In 
this case the
algorithm A2

Fig. 5: Recommendation process based on a set of meta-learners.

recommendation’s robustness, we propose forming an ensemble of quanti-
fiers by selecting the Top-k recommended methods. The ensemble can be
constructed using various strategies, such as averaging the predictions of the
selected quantifiers or assigning weights to each quantifier based on their pre-
dicted errors3, where the quantifier with the lowest error receives the highest
weight. In our proposal, the following strategies are explored:
– Top-1: the recommender selects the best quantifier for a new dataset,

choosing the method that produces the lower error. This quantifier is
then employed to perform the quantification task, leveraging its suit-
ability as determined by the meta-features of the dataset.

– Top-k: we adopt an ensemble strategy to select the k methods whose
predicted errors were the lowest. Next, we merge the Top-k methods
using the median of their predictions, with the goal of leveraging the
advantages of various quantifiers.

– Top-k+W: we further refine the ensemble approach by weighting each
of the k selected quantifiers based on their errors. Quantifiers with the
lowest errors predicted are given higher weights. Let qi represents the i-
th quantifier, and ei the predicted error by the recommender. The weight
wi for each quantifier is inversely proportional to its error. The weights
wi are calculated as follows: wi =

1/ei∑k
j=1(1/ej)

The weighted ensemble
quantifier is expressed as:

Top-k + W =

k∑

i=1

wi · p̂qi(↑)

3 Note that the meta-learner aims to predict the MAE for a new dataset. Consequently,
meta-learners with the lowest MAE can be combined.
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where p̂qi(↑) represents the predicted distribution of the positive class
by qi among the k quantifiers with the smallest errors. This equation
guarantees that quantifiers with smaller errors have a greater influence
on the final quantification outcome.

5 Experiments

This section details the experiments conducted with multiple established quan-
tification algorithms and a wide range of meta-features. To reduce the presence
of bias, we collected a total of 100 datasets of binary classification problems from
di!erent domains in public data repositories [18,29]. Each dataset was chosen
not only for its diversity but also to ensure it contained enough instances to
apply the APP with a batch size of 100 instances. We prepared each dataset
by transforming incompatible attributes for machine learning through one-hot
encoding for categorical attributes and removing attributes with missing values.
Dataset descriptions and codes are available in the paper repository4.

The meta-features were extracted using the Python package Meta-Feature
Extractor (MFE) [2]. We extracted all the default meta-features from the MFE
package, resulting in a total of 111 meta-features categorized into the follow-
ing groups: Simple, Statistical, Information-Theoretic, Model-Based, and Land-
marking. Mean and standard deviation were used as summary functions to aggre-
gate the di!erent numbers of meta-features. Min-max normalization was applied
to the resulting meta-features.

Since we propose an ensemble method, we generated baseline ensembles for
a fair comparison. For every dataset, we chose k quantifiers at random and used
the median prediction of these k quantifiers as the ensemble output. We tested
1, 3, and 5 as values k. To reduce the influence of randomly selecting quantifiers,
the baseline ensembles were generated 30 times for each dataset, and the mean
result was reported for a fair comparison.

To build the meta-target we followed a structured process to accurately assess
the performance of each quantification algorithm on the selected datasets. Using
the APP, we split each dataset into training and test sets using stratified sam-
pling without replacement with 70% and 30% proportions, respectively. Then,
from the training set we learn a scorer (classifier) using Regularized Logistic Re-
gression (LR), provided by the Scikit-Learn5 library. For each dataset, we tune
the following hyperparameters: C in the range {10↑3, 10↑2, 10↑1, 1, 101, 102, 103},
and class-weight in balanced or none. Since some quantifiers require scores, tpr,
and fpr, we estimate them using 10-fold stratified cross-validation on the training
set. In our experiments, we include quantifiers that require a scorer/classifier in
an intermediate step. The following quantifiers were included: CC, ACC, MAX,
PCC, PACC, X, MS, HDy, SMM, SORD, and DyS. The hyperparameter settings
for HDy and DyS were based on [15] and [19], respectively.

4 https://github.com/Bachega/lequa2024_workshop
5 https://scikit-learn.org

https://github.com/Bachega/lequa2024_workshop
https://scikit-learn.org
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In the testing phase, from each test dataset, we create multiple samples com-
posed of 100 instances with di!erent class distributions in each sample. The
positive class distribution in each test sample varies from 0% to 100%, in incre-
ments of 5%. We repeated each setting ten times to reduce the error variance
and averaged the results.

To assess the performance of quantifiers, we use the MAE in two situations:
estimating the meta-target of the meta-table in Step 2 and evaluating the final
performance of quantifiers. We compare the methods according to the Friedman
test with 95% confidence and the Nemenyi post-hoc test.

To evaluate the e!ectiveness of recommendations, we use the recommenda-
tion hit that evaluates the success of a recommendation system by checking if the
recommended algorithm is among the top performing ones for a given dataset.
It ensures that the recommended algorithm is either the best or performs simi-
larly to the best algorithms, thereby validating the recommender’s e!ectiveness
[30]. We employ the Random Forest algorithm as the meta-learner, utilizing the
default hyperparameters available in the Scikit-Learn library5 library.

Suppose Aopt represents the optimal quantifier algorithm for a dataset Sd,
and ASetopt denotes the set of quantifier algorithms in which each algorithm
has no significant di!erence from Aopt, including Aopt itself. The recommenda-
tion hit for a dataset Sd is defined as a binary measure that indicates whether
the recommended algorithm Arec is in the optimal algorithm set. Therefore,
Hit(Arec, Sd) = 1 indicates that the recommendation is e!ective and the rec-
ommended quantifier algorithm Arec is included in ASetopt for Sd. Conversely,
Hit(Arec, Sd) = 0 means that the recommended quantifier algorithm Arec does
not belong to ASetopt. In other words, Arec performs significantly worse than
the optimal quantifier algorithm Aopt on Sd, indicating a poor recommendation.
The ASetopt set for each dataset is defined using a Friedman test followed by
the Conover post-hoc test with Holm procedure, as recommended by [30], per-
formed at a significance level of 0.05. To evaluate the recommendation system,
we calculate the average Hit Ratio using Leave-One-Out across all datasets S:

Hit Ratio(Arec,S) =
1

M

M∑

d=1

Hit(Arec,Sd)

6 Results

Our meta-learner achieves a Hit Ratio of 0.83 (83%) when it recommends the
best quantifier (k = 1), which means that for 83 out of 100 datasets, the recom-
mended quantifier is optimal, according to the Hit Ratio measure. As we consider
the recommendation of the Top-3 (k = 3) and Top-5 (k = 5) scenarios, the Hit
Ratios increase to 0.97 (97%) and 1.00 (100%), respectively. These results were
expected given the criterion utilized by the Hit Ratio, which is based on a statis-
tical test to define the k best quantifiers. This means that a Hit is recorded not
only for the absolute best quantifier but also for those that do not have a statis-
tically significant di!erence from the best one, ensuring a more comprehensive
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evaluation of the recommended quantifiers’ e!ectiveness. These results support
our main hypothesis that an MtL architecture can e!ectively recommend high-
quality quantifiers according to the characteristics of each dataset.

Inspired by our preliminary findings, our subsequent analysis seeks to demon-
strate the improvement in quantification outcomes achieved by either suggesting
the optimal quantifier (k = 1) or constructing an ensemble composed of the k
recommended quantifiers, as outlined in Step 4 of our architecture. Figure 6 sum-
marizes the results to illustrate the overall performance in terms of the average
ranking of quantifiers across 100 datasets.

Fig. 6: Aggregation of several rank positions for all quantifiers, including those recom-
mended by our MtL architecture.

To compute the average ranking for each dataset, we first assess the rank-
ing of all quantifiers based on MAE for each dataset and subsequently calculate
the mean ranks across all datasets. The quantifier that provides minimum MAE
is ranked first. We highlight that the Leave-One-Out cross-validation was em-
ployed, ensuring that the dataset under testing is excluded from the training
partition of the meta-leaner induction. Consequently, each dataset is tested in-
dividually while not contributing to the training process, providing an unbiased
evaluation of the recommendation architecture’s performance. This rigorous val-
idation technique enhances the reliability of our results by ensuring that the
model’s predictions are not influenced by prior exposure to the test dataset.

Our MtL architecture improves on the best quantifiers and outperforms them
in a large number of datasets from a variety of domains. This achievement corrob-
orates our ancillary hypothesis, demonstrating the robustness and adaptability
of our recommendation architecture. Additionally, our proposal helps to select
the best k quantifiers using the Hit Ratio criterion, enabling the construction
of an ensemble of quantifiers in a data-driven scheme. This approach further
enhances the accuracy and reliability of quantification tasks by leveraging the
combined strengths of multiple quantifiers tailored to the unique characteristics
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of each dataset. Figure 7 shows the critical di!erence diagram for all quantifica-
tion approaches, including those built by our architecture.

6 8 10 12 14 16

Top-3(5.8)
Top-3+W (5.8)

Top-5(5.9)
Top-1(6.1)

Top-5+W (6.8)
DyS (7.8)

Baselinek = 5 (7.8)
SORD (8.2)

Baselinek = 3 (9.7)
SMM (9.7)

(17) PCC
(16) CC
(15) PACC
(13) Baselinek = 1
(12) ACC
(12) X
(11) HDy
(11) MAX
(9.8) MS

Fig. 7: Friedman’s Nemenyi post-hoc test [7] for mean absolute quantification error.
Groups of methods that are not significantly di"erent at p < 0.05 are connected.

Our architecture identified the optimal quantifier for most datasets (Top-
1), leading to enhanced performance compared to choosing a single quantifier
(DyS). The results reveal that the recommended quantifier significantly outper-
form most quantifiers, except DyS and SORD. Using our architecture to select
a quantifier for a given dataset, or applying our proposed ensemble methods,
resulted in a statistical better performance than any other existing quantifier,
except DyS and SORD. Although no statistical di!erence was observed between
our proposals and state-of-the-art quantifiers, choosing a base quantifier tailored
by data characteristics through our meta-learning approach proves to be highly
e!ective and stable, being Top-1 ranked consistently better than any other ex-
isting methods.

The comparison between ensemble and nonensemble methods might be con-
sidered unfair. Thus, we include baseline ensembles that select k quantifiers ran-
domly. The proposed ensembles consistently outperform the baselines. Whether
weighted or not, the Top-3 and Top-5 methods demonstrate superior e!ective-
ness compared to the baselines, which confirms that building ensembles through
meta-learning leads to better quantification accuracy. Interestingly, the base-
lines also demonstrate competitive performance, particularly Baselinek=3 and
Baselinek=5, surpassing most base quantifiers. The comparable performance of
most base quantifiers can explain this result, as also noted by [27].

Finally, our ensembles consistently outperform the baseline methods and base
methods, with the di!erences being statistically significant in most cases.

7 Conclusion

This paper presents the first architecture for quantifier recommendation using
meta-learning, significantly improving the e"ciency and e!ectiveness of quan-
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tification tasks. By analyzing datasets through meta-features, our approach pre-
dicts the most suitable quantification algorithm for each dataset. Our method
can identify the best quantifier for 83% of the studied datasets. Furthermore,
our ensemble strategies outperform other state-of-the-art quantifiers, highlight-
ing the robustness of our approach.

Our main contributions include introducing a meta-learning-based scheme
for quantifier recommendation, validating its e!ectiveness through extensive ex-
periments, and demonstrating the potential of ensemble strategies to surpass
individual quantifiers. Our architecture is in its early stages, with potential for
exploring additional ensemble-building strategies to enhance robustness and per-
formance. Future research should map and analyze situations where recommen-
dations fail, providing insights to refine the recommendation mechanism.
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