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Abstract. LeQua 2024 is a data challenge about methods and systems
for “learning to quantify” (a.k.a. “quantification”, or “class prior estima-
tion”), i.e., for training predictors of the relative frequencies of classes
Y = {y1, ..., yn} in sets of unlabelled datapoints. While these predictions
could be easily achieved by first classifying all datapoints via a classifier
and then counting how many datapoints have been assigned to each class,
a growing body of literature has shown this approach to be suboptimal,
especially when the training data and the test data are a!ected by some
form of dataset shift, and has proposed better methods. The goal of this
data challenge is to provide a setting for the comparative evaluation of
methods for learning to quantify. LeQua 2024 is the 2nd edition of the
LeQua challenge, following the successful 1st edition of 2022.

In LeQua 2024, four tasks were o!ered. The first three tasks (T1, T2,
T3) tackle learning to quantify under prior probability shift, while the
fourth task (T4) tackles learning to quantify under covariate shift; T1
and T4 are about binary quantification, T2 is about single-label mul-
ticlass quantification, while T3 is about ordinal quantification. For all
such tasks, data are provided to participants in ready-made vector form.
In this overview article we describe in detail the structure of the data
challenge and the results obtained by the participating teams.

1 Learning to Quantify

In a number of applications involving classification, the final goal is not determin-
ing which class (or classes) individual unlabelled datapoints (e.g., textual docu-
ments, images, or other) belong to, but estimating the prevalence (or “relative
frequency”, or “prior probability”, or “prior”) of each class y → Y = {y1, ..., yn}
in the unlabelled data. Training predictors of the class prevalence values in unla-
belled data is known as learning to quantify (LQ – a.k.a. quantification, or class
prior estimation) [14, 19, 22].

LQ has several applications in fields (such as the social sciences, political
science, market research, epidemiology, and ecological modelling) which are in-
herently interested in characterising aggregations of individuals, rather than the
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individuals themselves; disciplines like the ones above are usually not interested
in finding the needle in the haystack, but in characterising the haystack. For
instance, in most applications of tweet sentiment classification we are not con-
cerned with estimating the true class (e.g., Positive, or Negative, or Neutral) of
individual tweets. Rather, we are concerned with estimating the relative fre-
quencies of these classes in the set of unlabelled tweets under study; or, put in
another way, we are interested in estimating as accurately as possible the true
distribution of tweets across the classes.

It has by now unequivocally been shown that performing quantification by
classifying each unlabelled instance and then counting, for each class, the in-
stances that have been attributed to the class (the “classify and count” method),
usually leads to poor quantification accuracy (see e.g., [3, 7, 9, 12, 13, 23, 33, 34]),
due to (a) classifier bias and the mismatch between classification loss and quan-
tification loss, and (b) the presence of dataset shift (see below). This subopti-
mality of “classify and count” also evokes “Vapnik’s principle” [49], which states

If you possess a restricted amount of information for solving some prob-
lem, try to solve the problem directly and never solve a more general
problem as an intermediate step. It is possible that the available infor-
mation is su!cient for a direct solution but is insu!cient for solving a
more general intermediate problem.

In our case, the problem to be solved directly is quantification, while the more
general intermediate problem is classification.

One reason why “classify and count” is suboptimal is that many application
scenarios su”er from dataset shift [31, 41], defined as the situation in which the
distribution P (X,Y ) from which the labelled training data L have been drawn
is di”erent from the distribution Q(X,Y ) from which the unlabelled data U
have been drawn. The presence of dataset shift means that the well-known IID
assumption, on which most learning algorithms for training classifiers hinge, does
not hold. In turn, this means that “classify and count” will perform suboptimally
on sets of unlabelled datapoints that exhibit dataset shift with respect to the
training set, and that the higher the amount of this shift, the worse we can
expect “classify and count” to perform.

As a result of the suboptimality of the “classify and count” method, LQ has
slowly evolved as a task in its own right, di”erent (in goals, methods, techniques,
and evaluation measures) from classification [14,22]. For the near future it is easy
to foresee that the interest in LQ will increase, due (a) to the increased awareness
that “classify and count” is a suboptimal solution when it comes to prevalence
estimation, and (b) to the fact that, with larger and larger quantities of data
becoming available and requiring interpretation, in more and more scenarios we
will only be able to a”ord to analyse these data at the aggregate level rather
than individually.

LeQua 2024 (https://lequa2024.github.io/) follows in the footsteps of
LeQua 2022 [16,17], the first edition of this data challenge. LeQua 2022 was the
first data challenge ever to be entirely devoted to quantification; while this topic
had surfaced in previous shared tasks, it had never been their real focus.
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2 Setting up LeQua 2024

In quantification, a datapoint (usually represented as x) is the individual unit of
information; for instance, a textual document, an image, a video, are examples of
datapoints. As in LeQua 2022, as datapoints we use textual objects (and, more
specifically, product reviews); however, this choice causes no loss of generality,
since these textual objects are provided to the participants already in vector
form.

A datapoint x has a class label, i.e., it belongs to a certain class y → Y =
{y1, ..., yn}; in this case we indicated by y the label of x. In LeQua 2024, the
classes are either the merchandise classes to which the products belong, or the
sentiment scores that the authors have attached to the reviews they have writ-
ten (see Section 2.2 for more). Some datapoints are such that their label is
known to the quantification algorithm, and are thus called labelled datapoints ;
we typically use them as training examples for the quantifier-training algorithm.
Some other datapoints are such that their label is unknown to the quantifier-
training algorithm and to the trained quantifier, and are thus called unlabelled
datapoints; for testing purposes we use datapoints whose label we hide to the
quantifier-training algorithm and to the trained quantifier, and thus play the
role of unlabelled datapoints.

Unlike a classifier, a quantifier must not predict labels for individual data-
points, but must predict prevalence values for samples (i.e., sets) of unlabelled
datapoints. A prevalence value pω(yi) for a class yi → Y and a sample ω is a
number in [0,1] such that the prevalence values pω(y1), ..., pω(yn) for the classes
in Y sum up to 1; in other words, pω(y1), ..., pω(yn) are a distribution of the dat-
apoints of ω over Y. Note that when, in the following, we use the term “label”,
we always refer to the label of an individual datapoint (and not of a sample of
datapoints; samples do not have labels, but prevalence values for classes).

2.1 The tasks

LeQua 2022 o”ered four tasks. In two of them, all (training, development, and
test) datapoints were provided to participants in ready-made vector form, while
in the other two the datapoints were provided in their original textual form. Each
of these modalities included two variants: binary quantification and single-label
multiclass quantification. In all four tasks, the data were characterised by prior
probability shift (see below).

LeQua 2024 also o”ered four tasks (called T1, T2, T3, T4), but these tasks
were (at least partially di”erent) from those of LeQua 2024; in particular,

– In all LeQua 2024 tasks, the datapoints were provided to the participants
in ready-made vector form; the goal was to allow the participants to con-
centrate on optimising their quantification methods, rather than spending
time on optimising the process for producing vectorial representations of the
datapoints.

– LeQua 2024 includes tasks characterised by di”erent types of dataset shift.
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Task Codeframe structure Type of dataset shift

T1 Binary Prior probability shift
T2 Single-label multiclass Prior probability shift
T3 Ordinal Prior probability shift
T4 Binary Covariate shift

Table 1: Main characteristics of the four tasks o”ered within LeQua 2024.

The main characteristics of the four tasks o”ered within LeQua 2024 are suc-
cinctly described in Table 1.

For each task, participant teams were required not to use any kind of (training
/ development / test) datapoints other than those provided for that task.

2.2 The data pool

The data we use are Amazon product reviews from a large crawl of such reviews
(the same crawl we had used for LeQua 2022). From the result of this crawl we
remove (a) all reviews shorter than 200 characters, and (b) all reviews that have
not been recognised as “useful” by any user;1 this yields the “pool” ε of reviews
that we use for our experimentation.

As for the set Y of class labels,

– for the two binary tasks (T1 and T4) we use two sentiment labels, i.e.,
Positive, which encompasses 4-stars and 5-stars reviews, and Negative, which
encompasses 1-star and 2-stars reviews (we discard 3-stars reviews);

– for the multiclass task (T2) we use 28 topic labels, representing the mer-
chandise class the product belongs to (e.g., Automotive, Baby, Beauty);2

– for the ordinal task (T3) we use the original sentiment label, which ranges
on {1-Star, 2-Stars, 3-Stars, 4-Stars, 5-Stars}.

In order to generate the vectorial representations of the reviews we use the
ELECTRA-Small model [10], giving each review in input to the generator and
using the last hidden state of the model as the representation of the review. Each
review is thus represented by a real-valued vector with 256 dimensions.

The data we use for LeQua 2024 are di”erent from the ones we used for
LeQua 2022. The main di”erence is that (a) di”erent datapoints are chosen for
the training samples, for the validation samples, and for the test samples, and
(b) a di”erent vectorisation is used (while we here use the ELECTRA-Small
model, LeQua 2022 used a vectorisation method based on GloVe vectors [39]).

1 This is meant to filter our “bogus” reviews (e.g., “I’m giving this 1 star because the
package was damaged!”) that would be di”cult for any classifier to label correctly.

2 The set of 28 topic classes is flat, i.e., there is no hierarchy defined upon it.
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2.3 Types of dataset shift and types of data extraction protocols

Dataset shift is defined as the situation in which (i) the training (and develop-
ment) data that are used for training a model are sampled from a joint distri-
bution P (X,Y ), (ii) the unlabelled data on which the trained model is deployed
are sampled from a joint distribution Q(X,Y ), and (iii) P (X,Y ) ↑= Q(X,Y ).

In LeQua 2024 we consider two types of dataset shift, i.e.,

1. prior probability shift (also known as label shift), defined as the case in which
P (Y ) ↑= Q(Y ) and P (X|Y ) = Q(X|Y );

2. covariate shift, defined as the case in which P (X) ↑= Q(X) and P (Y |X) =
Q(Y |X).

The literature on quantification has mostly tackled prior probability shift, and
only a few papers [5,23,48] have touched on the relationships between quantifi-
cation and covariate shift.

2.4 The baseline systems

Wemade the participants aware of the availability of QuaPy [32], a Python-based
open-source library3 for quantification research and development that provides
implementations of methods, evaluation measures, parameter optimisation rou-
tines, and evaluation protocols.

The implementations of the quantification methods we used as baselines can
be accessed via GitHub.4 These methods include:

– Classify and Count (CC): This is the trivial baseline, consisting in training
a standard classifier h on the training set L, using this classifier to classify
all the data items x in the sample ω, counting how many such items have
been attributed to class yi, doing this for all classes in Y, and dividing the
resulting counts by the cardinality |ω| of the sample.

– Probabilistic Classify and Count (PCC) [2]: This is a probabilistic vari-
ant of CC where the “hard” classifier h is replaced by a “soft” (probabilistic)
classifier s, and where counts are replaced by expected counts.

– Adjusted Classify and Count (ACC) [19]: This is an “adjusted” variant
of CC in which the prevalence values predicted by CC are subsequently cor-
rected by considering the misclassification rates of classifier h, as estimated
on a held-out validation set. For our experiments, this held-out set consists
of 40% of the training set.

– Probabilistic Adjusted Classify and Count (PACC) [2]: This is a prob-
abilistic variant of ACC where the “hard” classifier h is replaced by a “soft”
(probabilistic) classifier s, and where counts are replaced by expected counts.
Equivalently, it is an “adjusted” variant of PCC in which the prevalence val-
ues predicted by PCC are corrected by considering the (probabilistic versions

3
https://github.com/HLT-ISTI/QuaPy

4 Check the branch https://github.com/HLT-ISTI/QuaPy/tree/lequa2024/

LeQua2024
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of the) misclassification rates of soft classifier s, as estimated on a held-out
validation set. For our experiments, this held-out set consists of 40% of the
training set.

– The Saerens-Latinne-Decaestecker algorithm (SLD) [43] (see also [15]):
This is a method based on Expectation Maximization, whereby the posterior
probabilities returned by a soft classifier s for data items in an unlabelled
set U , and the class prevalence values for U , are iteratively updated in a
mutually recursive fashion.

– DM, a multiclass implementation of the distribution-matching approach
that adheres to the framework proposed by [4, 18], in which the divergence
measure to minimise is the Hellinger Distance.

– The recently proposedKDEy algorithm [35], a distribution-matching method
that models the distribution of the posterior probabilities using kernel den-
sity estimation. In particular, we adopt the variant that uses the Kullback-
Leibler divergence as the target loss to minimise, which is akin to maximising
the likelihood of the test data.

For all methods, we have trained the underlying classifiers via logistic regression,
as implemented in the scikit-learn framework.5 Note that all these methods
are natively multiclass.

We optimize two hyperparameters of the logistic regression learner by ex-
ploring C (the inverse of the regularization strength) in the range {10→4, 10→3,
. . ., 10+4} and class weight (indicating the relative importance of each class)
in {“balanced”, “not-balanced”}. For DM, we also explore the number of bins
in the range {2, 3, . . . , 10, 12, . . . , 32, 64}. For KDEy, we additionally explore the
bandwidth in the range {0.01, 0.02, . . . , 0.20}. For each quantification method,
model selection is carried out by choosing the combination of hyperparameters
that yields the lowest o!cial evaluation error used for each task across all vali-
dation samples made available to it.

2.5 Task T1: Binary Quantification under Prior Probability Shift

Task T1 is essentially the same as task T1A in LeQua 2022, i.e., it is a bi-
nary quantification task on data a”ected by prior probability shift, and was
re-proposed in LeQua 2024 in order to monitor the progress of the field on what
can be considered the “mother” of all quantification tasks.

As mentioned in Section 2.2, the datapoints here have binary sentiment la-
bels, obtained by considering as Positive all 4-stars and 5-stars reviews and by
considering as Negative all 1-star and 2-stars reviews.

To obtain our data, first of all we removed from our pool ε all reviews scored
“3-stars”. We then obtained the L1 training set by randomly extracting 5000
reviews from ε (di”erent from those we used in LeQua 2022), after which we
removed them from ε; the prevalence values of the positives and of the negatives
in the extracted set are 0.78 and 0.22, respectively. Subsequently, we simulated

5
https://scikit-learn.org/stable/index.html
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the presence of prior probability shift by extracting from ε development samples
and test samples according to the artificial prevalence protocol (APP), by now
a standard protocol for artificially injecting prior probability shift in the data to
be used in the evaluation of quantifiers.

In the general multiclass case, the APP consists of taking the set ε of data-
points remaining after the extraction of the training set, and extracting from it a
number of subsets (the development samples and the test samples), each charac-
terised by a predetermined vector (pω(y1), ..., pω(yn)) of prevalence values, where
y1, ..., yn are the classes of interest. In other words, for extracting a sample ω, we
generate a vector of prevalence values, and randomly select datapoints from ε
accordingly (i.e., by class-conditional random selection of datapoints, until the
desired class prevalence values are obtained). Note that in the data released to
the participants, for each development sample only the prevalence values that
characterise the sample, and not the label of each individual datapoint, was
disclosed. The goal of the APP is to generate samples characterised by widely
di”erent vectors of prevalence values; this is meant to test the robustness of a
quantifier (i.e., of an estimator of class prevalence values) in confronting class
prevalence values possibly di”erent (or very di”erent) from the ones of the set
it has been trained on. For doing this we draw the vectors of class prevalence
values uniformly at random from the set of all legitimate such vectors, i.e., from
the unit (n↓1)-simplex of all vectors (pω(y1), ..., pω(yn)) such that pω(yi) → [0, 1]
for all yi → Y and

∑
yi↑Y pω(yi) = 1. For this we use the Kraemer algorithm [47],

whose goal is that of sampling in such a way that all legitimate class distribu-
tions are picked with equal probability. For each vector thus picked we randomly
generate a test sample.

Note that the APP indeed simulates prior probability shift, since

– the fact that the samples are randomly selected according to a pre-specified
vector of probability values di”erent (in general) from the one that charac-
terises the training set, simulates condition P (Y ) ↑= Q(Y );

– the fact that the samples are drawn from the same data source from which
the training data are drawn simulates condition P (X|Y ) = Q(X|Y );

– these two conditions are (see Bullet 1 in Section 2.3) what altogether char-
acterise prior probability shift.

In the binary case (n = 2), for generating the D1 development set we used the
APP to extract 1000 development samples consisting of 250 reviews each; for
generating the U1 test set we extracted, in the same way, 5000 test samples also
consisting of 250 reviews each. The prevalence values for all samples in U1 were
disclosed to the participants after the end of the challenge.

The evaluation measure. In a theoretical study on the adequacy of evaluation
measures for quantification [46], relative absolute error (RAE) and absolute error
(AE) have been found to be, for binary and multiclass quantification, the most
satisfactory, and are thus the only measures used in LeQua 2022. RAE and AE
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are defined as

RAE(pω, p̂ω) =
1

n

∑

y↑Y

|p̂ω(y)↓ pω(y)|
pω(y)

(1)

AE(pω, p̂ω) =
1

n

∑

y↑Y
|p̂ω(y)↓ pω(y)| (2)

where pω is the true distribution on sample ω, p̂ω is the predicted distribution,
Y is the set of classes of interest, and n = |Y|. Note that RAE is undefined
when at least one of the classes y → Y is such that its prevalence in the sample
ω of unlabelled datapoints is 0. To solve this problem, in computing RAE we
smooth all pω(y)’s and p̂ω(y)’s via additive smoothing, i.e., we take p

ω
(y) =

(ϑ+pω(y))/(ϑ ·n+1), where p
ω
(y) denotes the smoothed version of pω(y) and the

denominator is just a normalising factor (same for the p̂
ω
(y)’s); following [21], we

use the quantity ϑ = 1/(2|ω|) as the smoothing factor. In Equation 1 we then use
the smoothed versions of pω(y) and p̂ω(y) in place of their original non-smoothed
versions; as a result, RAE is now always defined.

As the o!cial measure according to which systems are ranked, we use RAE;
we also compute AE results, but we do not use them for ranking the systems.
The o!cial score obtained by a given quantifier is the average value of the
o!cial evaluation measure (RAE) across all test samples; for each system we
also compute and report the value of AE. For T1 (but we will do the same for
T2, T3, T4 too) we use the Wilcoxon signed-rank test at di”erent confidence
levels (ϖ = 0.05 and ϖ = 0.001) to identify all participant runs that are not
statistically significantly di”erent from the best run, in terms of RAE and in
terms of AE.

2.6 Task T2: Single-Label Multiclass Quantification under Prior

Probability Shift

Similarly to Task T1, Task T2 is essentially the same as task T1B in LeQua
2022, i.e., it is a single-label multi-class quantification task on data a”ected by
prior probability shift, and was reproposed in LeQua 2024. Aside from the fact
that T1 is binary and T2 is multiclass, the two subtasks are very similar.

Task T2 uses 28 topic labels (the same as in T1B of LeQua 2022), representing
the merchandise classes to which Amazon products belong to. We have randomly
sampled 20,000 reviews from the pool ε for use as the training set L2. Following
the same protocol adopted for Task T1, we remove the reviews of L2 from ε,
and from this reduced pool we extract a development set D2 composed of 1,000
development samples, each composed of 1,000 reviews. Any review appearing
in a development sample is then removed from ε, after which we proceed with
the extraction of the U2 test set, composed of 5,000 test samples consisting of
of 1,000 reviews each. As the evaluation measures, here too we compute RAE
(which is also used for ranking the systems) and AE. All other choices made in
the design of this experimental setting are the same as for T1.
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2.7 Task T3: Ordinal Quantification under Prior Probability Shift

Task T3 is about quantification using an ordinal scale, under prior probability
shift; this task is new in LeQua 2024, since no ordinal scales were used in LeQua
2022. The quantification task is defined on a 1-star to 5-stars scale based on the
scores assigned to the reviews by their authors. The total order relation among
the five possible ratings makes this problem di”erent from a single-label multi-
class problem, since misassigning a probability mass to a class faraway from the
correct class is a more serious mistake than misassigning it to a class closer in
the total order.

For this first edition of the task we chose to follow the natural distribution
of data in the pool. The training set is thus composed of samples, i.e., sets of
reviews; each sample is composed of reviews of the same product. This is di”erent
from the training sets of the other tasks, which are just composed of reviews and
leave the use of possible sampling strategies for training up to the participants.
Obviously, nothing prevents participants to T3 from building di”erent samples
from the entire set of reviews contained in the training set of the task.

The training set L3 is composed of 100 samples, each associated to a specific
product; the 100 products were randomly selected from those with at least 200
reviews in ε. Each sample in L3 is composed of exactly 200 reviews. For products
with more than 200 reviews we randomly sampled 200 reviews using a stratified
random selection. This sampling protocol is known as the natural prevalence
protocol (NPP). In the case of T3 the PPS among the samples is thus originated
by the natural di”erence in the reviews that products of di”erent quality receive.
Our choice of the NPP in place of the APP is motivated by a shortage of data,
that would prevent a good APP sampling: the selection of 6,100 products with
at least 200 reviews ended up with a large portion of products having just a little
more than 200 reviews6, making the APP eventually produce many unrealistic
samples mostly composed of duplicate documents.

Samples in L3 were provided to participants with the star rating of each
review. We then removed the 100 products selected for the training set from
the pool and all of their reviews, and we identified a set of 1,000 products for
the development set D3. Each development sample is composed of 200 reviews.
Being a development set, the participants were provided with the prevalence of
star ratings for each sample, and not the star rating of the single reviews. After
removing also the products in the development set from the pool, we sample the
test set U3. The test is composed of 5,000 test samples, related to 5,000 di”erent
products, each sample consisting of 200 reviews. Participants had no access to
labels or prevalence values for samples in U3, which have been released publicly
after the end of the challenge.

The evaluation measure. The evaluation of quantification predictions for T3
requires taking into account the ordinal scale of the labels when comparing the

6 This is due to a long-tailed distribution in the original pool, in which few products
have many reviews, and many products have very few reviews.
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true and predicted distributions. A measure derived from the Earth Mover’s
Distance, the Normalised Match Distance (NMD) [44, 50], takes into account
the ordinal relations between classes. NMD is defined as

NMD(pω, p̂ω) =
1

n↓ 1

n→1∑

j=1

d(yj , yj+1) · |
j∑

i=1

p̂ω(yi)↓
j∑

i=1

pω(yi)| (3)

where 1
n→1 is a normalisation factor that allows NMD to range between 0 (best)

and 1 (worst), and d(yi, yi+1) is the distance in the ordinal scale among two
consecutive labels, which we assume to be always 1. Given all the samples in
the test set U3, each with a true distribution and a predicted distribution, we
evaluate NMD for each sample and compute the mean NMD value across all the
samples.

In this first edition of T3 we sampled the distributions randomly from the
pool, thus replicating in the validation and the test sets the natural unbalance
of star-rating distributions towards a high number of stars. By doing a simple
mean across all the samples, the more frequent distributions skewed towards a
high number of stars give a bigger contribution to NMD. For this reason we
evaluate also a macro version of NMD (Macro-NMD). We define n↓ 1 bins, one
of each interval from 1 to n, assigning each sample to the bin corresponding to
the average of the ordinal labels in the sample. The NMD value is computed for
each bin separately, and the Macro-NMD is the mean the resulting n↓ 1 NMD
values. In this way the Macro-NMD gives to the whole spectrum of mean ratings
an equal relevance, regardless of how the samples are distributed.

2.8 Task T4: Binary Quantification under Covariate Shift

Another novel task for LeQua is the binary quantification under covariate shift.
Any task presented so far in LeQua 2022, and the other tasks of LeQua 2024 are
concerned only with PPS, i.e., P (Y ) ↑= Q(Y ), while this novel challenge adds
also covariate shift, i.e., P (X) ↑= Q(X).

The quantification task of T4 is the same of T1, with the fundamental dif-
ference in the sampling process that generates the various sets. The training
set L4 is composed of 5,000 reviews. Reviews are sampled from the a restricted
pool that includes only reviewer for products in the Books or in the Electronics
categories. We use these two domains to simulate covariate shift because they
are the biggest ones. We consider as negative the reviews with one or two stars,
and as positive those with four or five stars, discarding the reviews with three
stars. The sampling for L4 is composed of 90% of Books reviews and 10% Elec-
tronics reviews. We chose this ratio to be able to simulate a broad range of
covariate shift in the development and test samples by varying the ratio of sam-
pling among the two categories. For the training set the sampling is stratified
with respect to the sentiment labels, i.e., we replicate the natural distribution
of labels from the sampling pool. The development set D4 is composed of 1,000
development samples, each one composed of 250 reviews. The sampling pool of
D4 is the one of L4 minus the reviews already included in L4. The sampling
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Table 2: The teams who participated in LeQua 2024 and the tasks for which
they submitted runs.

T1 T2 T3 T4
Lamarr x x x x
UniOeste x
TeamCUFE x x x x
UniOviedo(Team1) x x x
UniOviedo(Team2) x
UniLeiden x
UNSW x x

strategy of development samples uses APP on sentiment labels and also on the
two categories. APP on sentiment labels generates PPS, while APP on the two
categories generates covariate shift. For example, a sample can be created setting
a 80%-20% distribution on sentiment labels and a 40%-60% distribution among
categories. In this case, 32% of the reviews will be sampled from positive reviews
in Books, 48% from positive reviews in Electronics, 8% of negative reviews in
Books, and the remaining 12% from negative reviews in Electronics. The test
set U4 is generated in the same way of D4. The test set samples are 5,000, each
one composed of 250 reviews.

Since this is a binary quantification task, the evaluation measures we use are
the same as in T1, i.e., RAE (our o!cial evaluation measure for ranking the
systems), and AE.

2.9 Preventing data reuse across tasks

All the tasks use the same pool of documents to sample from. The training data
and the development data of each task di”ers from the one of the other tasks, but
they are closely related. This holds specially for reviews with sentiment labels
or star ratings in tasks T1, T2, and T4. In this scenario, a possible optimisation
strategy could be merging all the training data in order to improve a sentiment
classifier accuracy, which can give a sensible boost also to quantification accuracy.
This and similar reuse of data across tasks does not add any useful contribution
to the knowledge on the quantification problems and methods. We prevented
this by using for each task a di”erent random shu#e of the dimensions of the
vectors produced by embedding model, so that the vectors are informative only
within the task they belong.

3 The participating systems

Seven teams submitted runs to LeQua 2024. As shown in in Table 2, there is
a quite balanced participation across all the tasks, with a minimum of three
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participants in T4, and a maxium of five partipants in T1 and T3. This is a
significant di”erence from LeQua 2022, when most of the participants focused
on T1A (now T1). Two teams, Lamarr and TeamCUFE, participated to all four
Tasks. We here list the teams in alphabetical order:

– Lamarr [28] submitted a run each for all four tasks. All their runs are based
on solving an optimisation problem based on the negative log-likelihood
loss proposed by [1], optimising a latent representation that is then passed
through a softmax to convert it to a probability distribution. The loss has
a regularisation component added that promotes distributions tending to-
wards uniformity, with a specific version customised for T3 that promotes
a smooth transition of distribution values across the ordinal scale. The con-
tribution of the regularisation component is controlled by a parameter. The
posteriors given as input to the optimisation process are obtained training a
multi layer perceptron for T1, T2, and T3, and a Logistic Regressor for T4.
All the hyperparameters of the classifiers and the one of the regularisation
loss have been optimised running a grid search, evaluated on the validation
data.

– UniOeste [29] submitted a run for T1. The idea is pretty straightforward.
The system consists of an ensemble of several binary quantifiers. Di”er-
ent well-known quantification systems from the literature are used, includ-
ing DyS, HDy, and SLD (among many others), and di”erent classifiers are
trained at the basis, including XGBoost, CatBoost, Random Forest, and
SVMs. Each quantifier issues a prediction for the test bag and the predic-
tions are then ranked based on the quantifiers’ performance. Only the output
of the top-performing quantifiers are used to produce the final estimation,
which is obtained by averaging the class prevalence predictions of each mem-
ber of the committee.

– TeamCUFE submitted a run each for all four tasks. This team did not
give a description of their methods, and thus they cannot be included in the
description of results.

– UniOviedo(Team1) [40] submitted a run each for T2, T3, and T4. They
employed a deep learning method that relies on a novel (permutation-in-
variant) pooling layer, which models the distribution of bag instances in a
latent space as a mixture of Gaussian distributions with learnable mean and
covariance matrices. The network uses parallel pooling layers of this type
and enhances their combined utility by regularizing them towards minimal
Centered Kernel Alignment (CKA). This method follows the “symmetric”
approach, where training instances are bags labelled by prevalence (rather
than individual data items labelled by class), thus functioning as a bag-
based regressor. As such, the network can be trained with specific error
metrics in mind. The authors optimised the network for the o!cial evaluation
metrics used in each of the tasks they participated in (RAE for T2, T4, and
NMD for T4). One of the key di”erences compared to most other participant
teams is that UniOviedo(Team1) utilised part of the validation samples not
only for model selection but also for training the model. Additionally, they
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also applied some data augmentation heuristics for increasing the number of
training bags.

– UniOviedo(Team2) submitted a run for T3. Although the participating
team did not submit a notebook description of their method, the members
(consisting of David Pérez Román and Juan José del Coz from the University
of Oviedo) have informed us that the method they applied correspond to
their implementation, as made available in the QuantificationLib package
[6], of the method EDy [8]. EDy belongs to the distribution-matching family
of methods and is a variant of the original Energy Distance method proposed
by [25]. EDy relies on the Earth Mover Distance (EMD – also known as the
Wasserstein loss) as the divergence measure, which is particularly well-suited
for ordinal problems, as is the case of T3.

– UniLeiden [26] submitted a run for T1. This team used the Continuous
Sweep method [27], using an optimised SVM with RBF kernel as the base
classifier. They made a comparison on validation data against three other
quantifiers, i.e., Median Sweep [20], SLD [42], and DyS [30]. They found that
Sweep-based methods performed better than the other methods when the
underlying classifier performed poorly, and vice-versa, indicating a link with
the results of [45] in which Median Sweep method performed better than
SLD and DyS on datasets with smaller training sets (and thus with a likely
lower performance of the classifier) than those used in LeQua.

– UNSW [11] participated in T1 and T2. This team proposed two ensemble
methods for these tasks. For T1, they proposed a Multiple Classifiers - Sin-
gle Quantifier method (MC-SQ). This method uses an ensemble in which
all the members are instances of the same aggregative quantifier (they used
DyS [30]) equipped with di”erent classifiers. The classification algorithms
used to form the ensemble include Logistic Regression, Linear Discriminant
Analysis, Support Vector Machines, Light Gradient Boosting Machines, Gra-
dient Boosting, and CatBoost. The simple rationale of the method is to have
many di”erent classifier which are all known to be good overall performers
and to exploit the strength of the ensemble to filter out the cases in which
some of them may perform worse. Each classifier-quantifier pair in the en-
semble was subjected to a joint hyperparameter optimisation. This means
that each DyS instance in the ensemble has its own optimised number of
bins that is dependent on the specific classifier the quantifier is paired with.
Given a test sample, all the quantifiers in the ensemble make their predic-
tions, and the median value is taken as the final prediction of the MC-SQ
method. For T2, UNSW followed an approach that is the opposite of T1:
a single classification algorithm paired with many di”erent quantifiers, i.e.,
a Single-Classifier - Multiple Quantifiers (SC-MQ) method. In this case the
authors identified Logistic Regression as the most stable and best performing
classifier, and decide to evaluate the ensemble approach varying the quan-
tification methods. They use four quantification methods: Energy Distance
(EDy) [25], Kernel Density Estimation (KDEy) [36], Generalized Probabilis-
tic Adjusted Classify & Count (GPACC) [18], and a newly proposed EMQ-ini
method. The EMQ-ini method is a variant of EMQ [42] that uses the priors
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from GPACC as the initial priors for the unlabelled set, instead of directly
using the priors from the classifier. Also for T2 the optimisation of each
classifier-quantifier pair in the ensemble is performed jointly.

4 Results

In this section we discuss the results obtained by the participant teams in the
four subtasks we have proposed. The evaluation campaign started on February
15, 2024, with the release of the training sets (L1 . . . L4) and of the development
sets (D1 . . . D4); alongside them, the participant teams were provided with a
dummy submission, a format checker, and the o!cial evaluation script.7 The
unlabelled test sets (U1 . . . U4) were released on May 1, 2024; and runs had to
be submitted by June 15, 2024.

We used Codalab (https://codalab.org/) as the platform for the submis-
sion of runs by the teams; each team could submit up to three runs per subtask.
The o!cial competition can be accessed at.8 In this edition we set up a second
Codalab instance using the same validation set provided to them. The validation
version is available at.9 This second instance allowed teams to have an immedi-
ate evaluation of their methods on validation data, allowing them to check the
correctness of their submissions and the consistence of their evaluations with the
one performed by the o!cial evaluation platform.

The true labels of the unlabelled test sets were released on May 3, 2024, after
the submission period was over and the o!cial results had been announced to
the participants. In the rest of this section we discuss the results that the partic-
ipants’ systems and the baseline systems have obtained in the Binary Quantifi-
cation task (T1, Section 4.1), the Single-Label Multi-Class Quantification task
(T2, Section 4.2), the Ordinal Quantification task (T3, Section 4.3), and the
Covariate Shift task (T4, Section 4.4),

In the sections to come, we use the following notational conventions for the
tables displaying the results of the participant teams. The first column corre-
sponds to the o!cial measure used for ranking the participant systems (RAE in
T1, T2, and T4; NMD in T3) while the second column displays the secondary
evaluation measure (AE in T1, T2, and T4; Macro-NMD in T3). Results are
averaged across the 5,000 test samples. Boldface indicates the best method for
a given evaluation measure. Superscripts † and ‡ denote the methods (if any)
whose scores are not statistically significantly di”erent from the best one ac-
cording to the Wilcoxon signed-rank test at di”erent confidence levels: symbol
† indicates 0.001 < p-value < 0.05 while symbol ‡ indicates 0.05 ↔ p-value. The
absence of any such symbol indicates p-value ↔ 0.001 (i.e., that the di”erence in
performance between the method and the best one is statistically significant at
a high confidence level). Baseline methods are typeset in italic.

7
https://github.com/HLT-ISTI/LeQua2024_scripts/tree/main

8
https://codalab.lisn.upsaclay.fr/competitions/18965

9
https://codalab.lisn.upsaclay.fr/competitions/19100
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4.1 Task T1: Binary Quantification under Prior Probability Shift

Rank Run RAE AE

1 UNSW 0.09811 ± 0.27043 0.02063‡± 0.01608
2 KDEy 0.10179‡± 0.30431 0.02043 ± 0.01589

3 Lamarr 0.10653†± 0.31885 0.02128 ± 0.01667
4 DM 0.10699 ± 0.28473 0.02175 ± 0.01669
5 UniOeste 0.10850‡± 0.35492 0.02096†± 0.01648
6 SLD 0.11103‡± 0.36698 0.02113 ± 0.01660
7 PACC 0.13390 ± 0.46333 0.02399 ± 0.01809
8 UniLeiden 0.13917 ± 0.53773 0.02379 ± 0.01818
9 ACC 0.16439 ± 0.60318 0.02644 ± 0.02037
10 CC 0.97742 ± 3.91905 0.07955 ± 0.04816
11 PCC 1.26562 ± 5.11243 0.10175 ± 0.05985
12 TeamCUFE 2.53730 ± 10.82087 0.22472 ± 0.15197

Table 3: Results of Task T1, binary quantification under prior probability shift.

Table 3 shows the results of the participating teams in T1. The team obtaining
the best averaged result is UNSW. In this task, UNSW used a variant of an
ensemble method called MC-SQ that combines the output of di”erent classifiers
with one aggregative quantifier (see Section 3). This method is not only the
one scoring the lowest RAE, but also the one showcasing the smallest variance
of the lot. Notwithstanding this, the di”erences in performance with respect to
four other methods (KDEy, Lamarr, UniOeste, and SLD) are not statistically
significant according to the statistical test.

In terms of AE, the best performing method is KDEy. This may come as
a surprise, as KDEy was originally proposed with multiclass problems in mind,
and is not expected to bring to bear any significant advantage in the binary case.
Be it as it may, the di”erences in performance with respect to UNSW (MC-SL)
and UniOeste are not significant.

The four CC-variants are relegated to the bottom half of the results table.
The UniLeiden’s system performance is positioned between that of the baseline
methods PACC and ACC in the results table. This is significant, since UniLeiden
proposes a variant of the Medium Sweep algorithm, which in turn is an improved
variant of ACC. Despite the improvement brought to bear by UniLeiden, the
original PACC still seems to perform slightly better in terms of RAE, while
at the same time displaying a smaller variance. As a final remark, the (bad)
performances of the “unadjusted” variants (CC and PCC) are not comparable
with the rest of the methods in the table, yielding errors close to one order of
magnitude higher. TeamCUFE’s system produces even higher errors, both for
RAE and AE, and with much higher variation.
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Fig. 1: Diagonal plot for T1.

Figure 1 shows a so-called “diagonal plot” which displays the estimated
prevalence value for the positive class (y-axis) as a function of the true posi-
tive prevalence (x-axis). The plot is termed “diagonal” because the behaviour of
an ideal quantifier is represented by the diagonal line from (0,0) to (1,1). This
plot reveals that most of the methods perform fairly well at predicting the pos-
itive class prevalence. Exceptions are CC and PCC. The reason for this is that
neither of these methods applies any correction to the raw counts obtained from
a hard or soft classifier, respectively. Interestingly, CC and PCC do not intersect
the diagonal at the point where the true prevalence equals the training preva-
lence (marked on the plot as a cyan dot), which would be expected since CC and
PCC are known to be biased towards the training prevalence. The reason for this
deviation is that the classifier’s hyperparameters were optimized through model
selection on the validation samples, which are designed to exhibit significant
variations in prior probability shifts. As a result, the best hyperparameters are
those that manage to shift the classifier’s bias from the training prevalence to
0.5, which yields a lower averaged RAE across all validation samples. The most
noisy output is attained by TeamCUFE. Unfortunately, we do not have details
on how this method performs.

Figure 2 shows a di”erent plot that we may dub the “error-by-shift” plot,
in which the error (here displayed as log(RAE) to better highlight performance
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Fig. 2: Error-by-shift plot for T1.

di”erences) is shown as a function of the amount of PPS of the test samples
with respect to the training sample. Here, we measure PPS in terms of the
signed di”erence between the training positive prevalence and the test positive
prevalence. The greened region represents the density of experiments carried
out, which is close to uniform. Something which seems evident from the plot is
that most of the methods yield very small errors across the majority of the shift
spectrum, with higher errors concentrated at the extremes of the spectrum, i.e.,
where all instances are either positive or negative. CC, PCC, and TeamCUFE
achieve the smallest error at around 0.25 of shift, rather than at 0 (no shift), as
one might expect. This aligns with the previous observation that, through model
selection, these methods have shifted their inherent biases from the training
prevalence (0.78) to 0.5 in order to minimize the validation error. Consequently,
these methods happen to be biased towards the point 0.78-0.5 ↗ 0.25, where
they obtain the best results. For the rest of the methods, the di”erences in
performance are very thin.

4.2 Task T2: Single-Label Multiclass Quantification under Prior

Probability Shift

Table 4 shows the results obtained by the participating teams in T2. UniOvie-
do(Team1) obtained the best RAE score in the multiclass quantification problem
under prior probability shift. This score is not only the smallest, but also the one
displaying the smallest variation. The Wilcoxon test reveals this score is statis-
tically significantly better than the rest of the methods with high confidence. In
terms of AE, instead, the UNSW team obtained the best averaged score, which
is statistically significantly better than the rest of the methods. In this case,
the variant employed by the UNSW team corresponds to the a configuration
SC-MQ, i.e., to one in which there is only one classifier generating predictions
for an ensemble of aggregation methods (see Section 3).
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Rank Run RAE AE

1 UniOviedo(Team1) 0.92173 ± 0.70476 0.02097 ± 0.00566
2 Lamarr 1.03016 ± 0.84658 0.01412 ± 0.00322
3 UNSW 1.07856 ± 0.96585 0.01274 ± 0.00353

4 SLD 1.16158 ± 0.99066 0.01343 ± 0.00346
5 PACC 1.19418 ± 1.13479 0.01552 ± 0.00424
6 KDEy 1.20166 ± 1.05091 0.01367 ± 0.00367
7 DM 1.27189 ± 1.09683 0.01578 ± 0.00405
8 ACC 1.34787 ± 1.16063 0.01640 ± 0.00427
9 CC 2.30963 ± 1.38323 0.01660 ± 0.00310
10 PCC 2.67505 ± 1.60472 0.01931 ± 0.00337
11 TeamCUFE 4.02872 ± 2.12809 0.02587 ± 0.00334

Table 4: Results of Task T2, single-label multiclass quantification under prior
probability shift.

Fig. 3: Error-by-shift plot for T2.

Figure 3 displays the “error-by-shift” plot of T2. In this case, we measure the
amount of shift in terms of absolute error (since the signed di”erence we used in
Figure 2 is only defined in the binary case). This plot reveals some interesting
facts. First, that most methods degrade their performance at increasing levels
of PPS. UniOviedo(Team1) seems to be the most robust in this respect, though.
Second, the performance of all methods seems erratic at very high and (specially)
very smaller amounts of PPS. However, the density of experiments (greened
background) tells us that the number of experiments involved in such cases is
very small, which explains the higher variability. This plot also reveals that the
distribution of the “amount of shift” generated via APP is close to normal;
something that was already echoed in previous research [38].
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Rank Run NMD Macro-NMD

1 UniOviedo(Team1) 0.06438 ± 0.04773 0.08007‡± 0.02397
2 Lamarr 0.06585 ± 0.04706 0.07878 ± 0.02038

3 PCC 0.06680 ± 0.05069 0.09004‡± 0.03532
4 KDEy 0.06904 ± 0.04982 0.08297‡± 0.01993
5 UniOviedo(Team2) 0.07212 ± 0.05310 0.08771‡± 0.02564
6 CC 0.07974 ± 0.04760 0.08820‡± 0.01524
7 TeamCUFE 0.10726 ± 0.07755 0.18647‡± 0.11300
8 DM 0.10939 ± 0.06160 0.11445‡± 0.01200
9 SLD 0.11107 ± 0.06903 0.10947‡± 0.01220
10 ACC 0.11944 ± 0.06496 0.12473‡± 0.01498
11 PACC 0.12363 ± 0.06522 0.12830‡± 0.01189

Table 5: Results of Task T3, ordinal quantification under prior probability shift.

4.3 Task T3: Ordinal Quantification under Prior Probability Shift

Table 5 shows the results of the participating teams in T3. Also in this case,
UniOviedo(Team1) achieved the best result for the o!cial evaluation metric,
which in this case is NMD since this is an ordinal problem. The score obtained
by UniOviedo(Team1) is statistically significantly better than the rest of the par-
ticipating systems. However, in terms of Macro-NMD, the Lamarr team achieved
the best result. Nevertheless, according to the Wilcoxon test, no method appears
to be statistically significantly di”erent in terms of average rank performance.

It was expected that UniOviedo(Team1) and Lamarr would perform well in
this task, as both teams implemented solutions that take into account the ordi-
nal nature of the data. For example, UniOviedo(Team1) directly optimised for
the evaluation loss, while Lamarr explicitly regularised their solutions towards a
uniform distribution, which ultimately favours smooth solutions. What was un-
expected, however, was the seemingly good performance of PCC, a method that
not only disregards the ordinal nature of the data but also does not attempt
to counter any shift in the priors. This is a clear indication that the samples
provided may be characterized by a lower degree of prior probability shift com-
pared to tasks T1 and T2. The reason why, is that the samples are “natural”
(generated via NPP), i.e., are not generated via artificially (via APP) imposing
widely varying degrees of prior probability shift, as was instead the case for T1
and T2.

Figure 4 displays the averaged performance of the top-5 methods as a function
of di”erent levels of “jaggedness” of the tested distributions. More precisely, we
compute the jaggedness of a distribution pω as:

J(pω) =
1

2

n→1∑

i=2

(↓pω(yi→1) + 2pω(yi)↓ pω(yi+1))
2 (4)
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Fig. 4: Quantification performance as a function of the distribution “jaggedness”.

The plot reveals that all methods degrade their performance as the distributions
become “jaggy”. However, UniOviedo(Team1), Lamarr, and UniOviedo(Team2)
seem to behave more robustly across the entire spectrum. That Lamarr and
UniOviedo(Team2) performed well in T3 was to be expected, as both methods
have been designed with ordinal considerations in mind. Also, UniOviedo(Team1)
performed well in T3, despite the fact that this method is not specifically suited
for ordinal data. Notwithstanding this, note that UniOviedo(Team1) is trained
using the validation data as well, which inherently showcase many plausible
patterns of ordinal distributions, so one might expect that this method learns
to handle the ordinality which resides in the distributions. In contrast, other
methods such as PCC and KDEy, which are completely agnostic to the ordinal
nature of the data, tend to perform worse in di!cult scenarios. The fact that,
notwithstanding this, PCC and KDEy rank second and third in the table is a
consequence of the fact that most of the samples display low levels of jaggedness.

4.4 Task T4: Binary Quantification under Covariate Shift

Table 6 reports the results obtained for T4. In this case, the Lamarr team scored
the best result in terms of the o!cial evaluation measure (RAE), while SLD
obtained the best AE. Somehow surprisingly, though, the RAE score obtained by
UniOviedo(Team1) is not statistically significantly di”erent from the Lamarr’s
score, even though UniOviedo(Team1) ranked 5th. This may be explained by
the variance of their system, which is markedly higher than that of methods
SLD, DM, and KDEy, which occupy the 2nd, 3rd, and 4th positions in the rank,
respectively.

As recalled from Section 2.8, task T4 is not only characterized by covariate
shift but also by a shift in the priors. It is thus interesting to disentangle the
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Rank Run RAE AE

1 Lamarr 0.10930 ± 0.33394 0.02191 ± 0.01765
2 SLD 0.11497 ± 0.39872 0.02013 ± 0.01594

3 DM 0.11559 ± 0.32287 0.02341 ± 0.01853
4 KDEy 0.11804 ± 0.32916 0.02380 ± 0.01865
5 UniOviedo(Team1) 0.12975‡± 0.42556 0.02122 ± 0.01617
6 ACC 0.26187 ± 1.09686 0.03054 ± 0.02454
7 PACC 0.28918 ± 1.33046 0.03078 ± 0.02480
8 CC 1.11975 ± 4.33704 0.08292 ± 0.04915
9 PCC 1.45553 ± 5.63934 0.10735 ± 0.06316
10 TeamCUFE 2.49902 ± 9.93390 0.23017 ± 0.16531

Table 6: Results of Task T4, binary quantification under covariate shift.

systems’ performance in terms of both types of shifts, separately. Figure 5 dis-
plays the performance of the methods (on logarithmic scale) as a function of
the amount of prior shift. The trends we observe are, by and large, in line with
those of T1. Figure 6 instead displays the distribution of the errors for the top-5
methods as a function of the prevalence of the Books domain in the test sam-
ples, therefore e”ectively reflecting the amount of covariate shift with respect
to the training distribution. This plot shows a weak tendency to improve as the
prevalence of Books in the test samples increases, thereby approximating the
training mixture (made of 90% Books and 10% Electronics) and reducing the
amount of covariate shift. This tendency is more evident for Lamarr, the best
performer system for this task. One possible reason why the covariate shift has a
weak e”ect on the results may be that the embeddings were generated using the
ELECTRA-Small model [10], which is specifically trained to capture sentiment
polarity, rather than topical information, which may therefore be obscured.

Interestingly, PCC has obtained a poor score. This is relevant since this
method is considered to behave robustly in the presence of covariate shift. How-
ever, it is also known that its performance degrades when some shift in the
priors is also at play [24], as is the case for T4. Figure 7 compares the perfor-
mance of PCC against Lamarr, the top performer in Table 6, proving that PCC’s
performance in terms of RAE is out of scale.

Figure 8 reports the diagonal plot for T4. Interestingly enough, most methods
seem to perform very well notwithstanding the fact that the underlying distribu-
tions are a”ected by covariate shift as well. As witnessed for T1, CC, PCC, and
TeamCUFE struggle to obtain good predictions for the entire spectrum, since
these methods seem to be strongly biased toward the center of the distribution.
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Fig. 5: Error-by-shift plot for T4.

5 Final remarks

In this edition of LeQua, we have observed several tendencies worth remark-
ing. First, that the “symmetric approach” adopted by UniOviedo(Team1) shows
promising performance across many di”erent scenarios and involving di”erently
characterised types of dataset shift. This symmetric approach regards the prob-
lem as a regression one, in which both the training instances and the test in-
stances are composed by bags of individual datapoints. Such an approach thus
requires many bags, each labelled with its class prevalence values. The team
used (among other things) the validation samples otherwise provided for model
selection. Given that such samples were representative of the type of shift at play
in each task, the model was able to learn the particularities of each problem.
UniOviedo(Team1) thus leveraged more information during the training phase
than the competitors; however, this strategy is not unfair, as the validation sam-
ples were made available to all participation teams. Yet another di”erentiating
aspect of this method has to do with its ability to optimise specific loss func-
tions. This capability allowed UniOviedo(Team1) to tune their models for the
very same evaluation measures used to rank the participating systems. Perhaps
the most important di”erentiating aspect of this method is the fact that no
classifier is involved. This appears promising from the point of view of the Vap-
nik’s principle (outlined in Section 1), since the method is trained to solve the
quantification problem directly.

One notable observation is that the binary quantification problem (exempli-
fied by T1) is almost a “solved problem”, with most methods performing remark-
ably well in this case. In contrast, the multiclass quantification problem remains
significantly more challenging, leaving substantial room for improvement.

Compared to the previous edition, we observed many methods clearly out-
performing SLD. This is noteworthy, since SLD is widely considered a very hard-
to-beat system [1,37,38] and was one of the top-performing methods in the past
LeQua 2022 edition.
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Fig. 6: Errors of the top-5 methods at di”erent proportions of book and elec-
tronics domains.

Fig. 7: A comparison of the errors produced by PCC and the top performer
method Lamarr, at di”erent proportions of book and electronics domains.
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Fig. 8: Diagonal plot for T4.

Another important point concerns the di!culty in simulating meaningful
levels of prior shift in ordinal problems. Plausible ordinal distributions impose
certain constraints (e.g., smoothing requirements) that conflict with protocols
designed to artificially alter them. In future editions, we plan to explore more
sophisticated mechanisms to challenge participant systems with more abrupt
shifting conditions in ordinal problems.

Looking back, we believe that using a sentiment-specific feature extractor
reduced the impact of the covariate-shift e”ect introduced in task T4. For fu-
ture editions, we plan to incorporate alternative representation mechanisms that
better account for the controlled mixture of domains.

To conclude, we believe that LeQua 2024 has provided participating teams
with the opportunity to stress-test their cutting-edge systems in a controlled
setting, o”ering valuable insights to the community.
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