
Proceedings of the

4th International Workshop on

Learning to Quantify

(LQ 2024)

Mirko Bunse, Pablo González,
Alejandro Moreo, and Fabrizio Sebastiani (eds.)

Preface

The 4th International Workshop on Learning to Quantify (LQ 2024 – https:
//lq-2024.github.io/) was held in Vilnius, LT, on September 13, 2024, as
a satellite workshop of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD
2024). While the 1st edition of the workshop (LQ 2021 – https://cikmlq2021.
github.io/) had to be an entirely online event, LQ 2024 (like the 2nd edi-
tion LQ 2022 – https://lq-2022.github.io/ and 3rd edition LQ 2023 –
https://lq-2023.github.io/) was a hybrid event, with presentations given
in-presence, and both in-presence attendees and remote attendees.

The workshop was the second part (Sep 13 afternoon) of a full-day event,
whose first part (Sep 13 morning) consisted of a tutorial on Learning to Quan-
tify presented by Mirko Bunse and Alejandro Moreo. The LQ 2024 workshop
consisted of the presentations of three contributed papers, plu a number of
invited contributions about the LeQua 2024 challenge, i.e., an overview of the
challenge presented by the organisers, plus five brief presentations by LeQua
2024 participants. The program ended with a final collective discussion on
LeQua 2024, on the open problems of learning to quantify, and on future
initiatives. The present volume contains the text of these nine contributions.

We hope that the availability of the present volume will increase the
interest in the subject of quantification on the part of researchers and prac-
titioners alike, and will contribute to making quantification better known to
potential users of this technology and to researchers interested in advancing
the field.

Mirko Bunse
Pablo González

Alejandro Moreo
Fabrizio Sebastiani

i

Table Of Contents

Regular Papers

Comments on Friedman’s Method for Class Distribution Estimation

Dirk Tasche (North-West University, SA) . p. 1

Quantification Over Time

Feiyu Li, Hassan H. Gharakheili, and Gustavo Batista (University of New
South Wales, AU) . p. 17

Enhancing Quantification through Meta-Learning

Guilherme B. Gomes (Western Paraná State University, BR), Willian
Zalewski (Federal University for Latin American Integration, BR), and
André G. Maletzke (Western Paraná State University, BR) p. 35

LeQua 2024: The 2nd International Data Challenge on

Learning to Quantify

An Overview of LeQua 2024, the 2nd International Data Challenge on Learn-

ing to Quantify

Andrea Esuli, Alejandro Moreo, Fabrizio Sebastiani, and Gianluca
Sperduti (Consiglio Nazionale delle Ricerche, IT) p. 51

UniLeiden at LeQua2024: Evaluating Continuous Sweep and Comparison

Using Underlying Classifiers

Kevin Kloos (University of Leiden, NL) . p. 79

Ensemble Learning to Quantify: The CSE UNSW Team at LeQua 2024

Zahra Donyavi, Feiyu Li, and Gustavo Batista (University of New
South Wales, AU) . p. 84

Lamarr at LeQua2024: Regularized Soft-Max Likelihood Maximization

Tobias Lotz and Mirko Bunse (Lamarr Institute for Machine Learning and
Artificial Intelligence, DE) . p. 93

ii

UniOviedo at LeQua2024: Quantification via Gaussian Latent Space Repre-

sentations

Olaya Pérez-Mon and Pablo González (University of Oviedo, ES) .p. 97

UNIOESTE at LeQua 2024: Combining the top-ranked quantifiers

Luiz Luth, Daniel Ojeda, Guilherme B. Gomes, and André G. Maletzke
(Western Paraná State University, BR) .p. 102

The copyright (©) of all the papers in this volume is owned by the respective
authors.

iii

LQ 2024 Program Committee

Mirko Bunse, University of Dortmund, DE (co-Chair)
Pablo González, University of Oviedo, ES (co-Chair)
Alejandro Moreo, Consiglio Nazionale delle Ricerche, IT (co-Chair)
Fabrizio Sebastiani, Consiglio Nazionale delle Ricerche, IT (co-Chair)

Roćıo Aláız-Rodŕıguez, University of León, ES
Gustavo Batista, University of New South Wales, AU
Juan José del Coz, University of Oviedo, ES
Andrea Esuli, Consiglio Nazionale delle Ricerche, IT
Alessandro Fabris, Max Planck Institute for Security and Privacy, DE
Cèsar Ferri, Universitat Politècnica de València, ES
George Forman, Amazon Research, US
Wei Gao, Singapore Management University, SG
Rafael Izbicki, Federal University of São Carlos, BR
André G. Maletzke, Universidade Estadual do Oeste do Paraná, BR
Tobias Schumacher, University of Mannheim, DE
Marco Saerens, Catholic University of Louvain, BE
Dirk Tasche, Swiss Financial Market Supervisory Authority, CH

iv

Acknowledgments

The work of Alejandro Moreo and Fabrizio Sebastiani has been supported
by the SoBigdata++ project, funded by the European Commission (Grant
871042) under the H2020 Programme INFRAIA-2019-1, by the AI4Media
project, funded by the European Commission (Grant 951911) under the
H2020 Programme ICT-48-2020, and by the FAIR, SoBigdata.it, and QuaDaSh
projects, funded by the European Union under the NextGenerationEU fund-
ing scheme. The organizers’ opinions do not necessarily reflect those of the
European Commission.

uaDaSh
PRIN PNRR 2022Q

v

Comments on Friedman’s Method for Class
Distribution Estimation

Dirk Tasche[0000→0002→2750→2970]

Unit for Data Science and Computing, North-West University, South Africa
55801447@nwu.ac.za

Abstract. The purpose of class distribution estimation (also known as
quantification) is to determine the values of the prior class probabilities
in a test dataset without class label observations. A variety of methods
to achieve this have been proposed in the literature, most of them based
on the assumption that the distributions of the training and test data
are related through prior probability shift (also known as label shift).
Among these methods, Friedman’s method has recently been found to
perform relatively well both for binary and multi-class quantification.
We discuss the properties of Friedman’s method and another approach
mentioned by Friedman (called DeBias method in the literature) in the
context of a general framework for designing linear equation systems for
class distribution estimation.

Keywords: Prior probability shift · Label shift · Class prevalence ·
Quantification · Asymptotic variance

1 Introduction

The purpose of class distribution estimation (also known as quantification) is
to determine the values of the prior class probabilities in a test dataset without
class label observations. A variety of methods to achieve this have been proposed
in the literature, most of them based on the assumption that the distributions of
the training and test data are related through prior probability shift (also known
as label shift). See González et al. [10] and Esuli et al. [6] for recent surveys of
applications of and methods for quantification.

Friedman’s [9] method has recently been found to perform relatively well
both for binary and multi-class quantification (Schuhmacher et al. [18], Donyavi
et al. [5]). On many real-world datasets, the performance of Friedman’s method
seems to exceed the performance of the EM algorithm (Saerens et al. [16]) which
is an implementation of the maximum likelihood estimator for the test prior
class probabilities (also called class prevalences). This observation is somewhat
surprising because both Friedman’s estimator and the EM algorithm involve
estimates of the training posterior class probabilities which are notoriously hard
to estimate. Hence one might expect that the performances of Friedman’s method
and the EM algorithm are at a more comparable level.

2 D. Tasche

In order to find an explanation for the relatively good performance of Fried-
man’s method, we study its properties and the properties of another approach
mentioned by Friedman (called DeBias method by Castaño et al. [4]) in the
context of a general framework for designing linear equation systems for class
distribution estimation.

The outline of this paper and its contributions to the literature are as follows:

– Section 2 sets out the general assumptions and notation for the rest of the
paper.

– In Section 3, we discuss the general framework for designing linear equation
systems for class distribution estimation. (3b) and (3c) of Theorem 1 below
appear to be novel, covariance-based versions of the basic equation (3a).

– In Section 4, we describe Friedman’s method in detail and propose an al-
ternative implementation that avoids direct estimation of the posterior class
probabilities (Remark 1 below).

– In Section 5, we investigate conditions for the uniqueness of the solutions to
linear equation systems for class distribution estimation. In Remark 3, we
show that DeBias, the second method proposed for the binary case by Fried-
man [9] which involves the variance of one of the posterior class probabilities,
is a special case of a covariance matrix-based approach to the multi-class case
considered in Corollary 2. This provides an answer to the open research ques-
tion “How to generalise the inequality of Corollary 6 of Tasche [21] to the
multi-class case?” raised in Section 4.12 of Krempl et al. [13]. In addition,
we show that the population versions of DeBias and ‘Probabilistic adjusted
count (PAC)’ by Bella et al. [1] are identical (Remark 5 below).

– In Section 6, we compare the asymptotic variances of DeBias, Friedman’s
method and the maximum likelihood estimator in the binary case by means
of a numerical example. The setting of the example is semi-asymptotic with
an infinite training dataset and a finite large test dataset.

– Section 7 concludes the paper with a summary of the findings.

2 Setting

For this paper, we assume the following setting which is quite common in the
study of dataset shift (see, for instance, Moreno-Torres et al. [15]):

– A class variable Y with values in Y = {1, . . . , ω} with ω → 2 (multi-class
case). A features vector X with values in X .

– Each example (or instance) has a class label Y and features X.
– In the training dataset, for all examples their features X and labels Y are

observed. P denotes the training (joint) distribution, also called source dis-
tribution, of (X,Y) of which the training dataset has been sampled.

– In the test dataset, only the features X of an example can immediately be
observed. Its class label Y becomes known only with delay or not at all. Q
denotes the test (joint) distribution, also called target distribution, of (X,Y)
of which the test dataset has been sampled.

Comments on Friedman’s Method 3

– We assume 0 < P [Y = y] < 1, 0 < Q[Y = y] < 1 for all y ↑ Y.
– For the sake of a more concise notation, we define py = P [Y = y] and

qy = Q[Y = y] for y ↑ Y.

We also use the notation EP [Z] =
∫
Z dP and EQ[Z] =

∫
Z dQ for integrable

real-valued random variables Z.
The setting described above is called dataset shift or distribution shift in the

literature if training and test distribution are not the same, i.e. P ↓= Q. In the
rest of the paper, we consider the following more specific type of dataset shift.

Definition 1. The training distribution P and the test distribution Q are related

through prior probability shift if for all y ↑ Y and all measurable sets M ↔ X
it holds that

1

P [X ↑ M |Y = y] = Q[X ↑ M |Y = y].

The term ‘prior probability shift’ appears to have been coined by Storkey [20]. In
the literature, prior probability shift is also called target shift (Zhang et al. [27]),
label shift (Lipton et al. [14]), or global drift (Hofer and Krempl [12]).

Prior probability shift implies dataset shift, i.e. P ↓= Q, if P [Y = y] ↓= Q[Y =
y] for at least one y ↑ Y. Hence, as the class labels Y are not observed in
the test dataset, the test prior probabilities qy = Q[Y = y] must be estimated
from feature observations in the test dataset as well as feature and class la-
bel observations in the training dataset. Such an estimation procedure is called
quantification or class distribution estimation.

3 Linear equations for class distribution estimation

In the following, we treat class distribution estimation under prior probability
shift as a parametric estimation problem in a family of mixture distributions:

– We consider the distributions QX on X that can be represented as

QX [M] =
∑ω

y=1
qy P [X ↑ M |Y = y] (1)

for all measurable sets M ↔ X . The family of these distributions is parame-
trised through the test prior class probabilities (q1, . . . , qω) ↑ (0, 1)ω with the
additional constraint ∑ω

y=1
qy = 1. (2)

– Unless stated otherwise, for the purposes of this paper we assume that the
conditional feature distributions P [X ↑ M |Y = y], M ↔ X , under the
training distribution are known and do not contribute to the estimation
uncertainty.

1 Recall the notion of conditional probability for events A and B: P [A|B] = P [A→B]
P [B]

if P [B] > 0 and P [A|B] = 0 otherwise.

4 D. Tasche

– The parametrised distribution family defined in (1) is identifiable in the sense
of Definition 11.2.2 of Casella and Berger [3], i.e. QX and Q↑

X di!er whenever
the corresponding parametrisations (q1, . . . , qω) and (q↑1 , . . . , q

↑
ω) di!er.

According to San Martín and Quintana [17], identifiability is necessary for
the existence of both asymptotically unbiased estimates and consistent estimates.
This observation leaves open the question of how to find such estimates. In the
following, we strive to design estimators of the class prior probabilities qy as
unique solutions to systems of linear equations2.

Calling the following result a theorem is an exaggeration as its proof is very
short and basic. But it is fundamental for the study and estimation of prior
probability shift and in that sense deserves being called a theorem. Of course,
Theorem 1 is not novel. In particular (3a) was mentioned by Saerens et al. [16]
(Eq. (2.5), with Z chosen as a hard classifier) and quite likely also in earlier
works. Even so, linking the notion of prior probability shift to the training dataset
covariances of functions of the features and the indicators of the classes or the
posterior class probabilities might have some degree of novelty, at least in the
multi-class case.

Theorem 1. Let py = P [Y = y] and qy = Q[Y = y] for y ↑ Y. Suppose that

P and Q are related through prior probability shift in the sense of Definition 1

and that the random variable Z is integrable both under P and Q. Then it holds

that
3

EQ[Z] =
∑ω

y=1
qy EP [Z|Y = y] (3a)

=
∑ω

y=1

qy
py

covP
(
Z, 1{Y=y}

)
+ EP [Z]. (3b)

If Z is X-measurable, i.e. if there is a function f : X ↗ R such that Z = f(X),
then it also follows that

4

EQ[Z] =
∑ω

y=1

qy
py

covP
(
Z, P [Y = y|X]

)
+ EP [Z]. (3c)

Proof. The theorem follows from the law of total probability combined with the
definitions of conditional expectation and covariance respectively. ↘≃

(3a) provides the theoretical basis for Firat’s ([7], Section 3.2) constrained
regression approach for quantification under prior probability shift. Firat’s K

2 Other popular approaches to designing estimators include distribution matching
(Gonzàlez et al. [10] and the references therein), ensemble methods (Serapião et
al. [19] and the references therein) and expectation maximisation as implementation
of maximum likelihood estimation (Saerens et al. [16]).

3 For sets S, define the indicator function 1S by 1S(s) = 1 if s → S and 1S(s) = 0 if
s /→ S.

4 P [Y = y|X] denotes the posterior probability of Y = y given X in the sense of general
conditional probability as defined, for instance, in Section 33 of Billingsley [2].

Comments on Friedman’s Method 5

classes correspond to the ω classes of this paper. The L rows of Firat’s matrix X
emerge when (3a) is applied to L di!erent variables Z1, . . . , ZL.

As noted by Firat, (3a), (3b) or (3c) can be the starting point for setting
up a system of linear equations for estimating the class prior probabilities qy
under prior probability shift. For instance, the choice fy(X) = 1Cy (X) as crisp
(or hard) ‘one vs. all’ classifier for class y, learned on the training dataset only,
leads to the ‘Adjusted Count’ estimation approach used in the popular paper
by Lipton et al. [14] who described it as ‘method of moments’. Observe that
for this version of ‘one vs. all’, there is no problem with changing the type of
dataset shift, in contrast to the issue for combined ‘one vs. all’ quantifiers noted
by Friedman [9] and Donyavi et al. [5].

Some questions should be considered when designing a concrete instance of
such a linear equation system for quantification.

How many equations should be used? If the number of classes in the model
is ω = |Y| one might conclude that at least ω equations are needed in order to
obtain a unique solution. However, as another consequence of the law of total
probability, the qy must additionally fulfil the linear equation (2). Hence, in
order to achieve uniqueness of the solution, at least ω equations must be set up
if (2) is considered a constraint that is checked once a solution has been found.
Alternatively, if (2) is to be taken into account at the same time as the other
equations, for uniqueness as a minimum it su"ces to set up ω ⇐ 1 additional
equations on the basis of Theorem 1. Sticking with ω ⇐ 1 equations has the
advantage of reducing the number of random variables Z that must be chosen
for the equations in Theorem 1.

If more then ω equations are set up the resulting linear equation system
for the qy is overdetermined such that in its sample-based versions there might
be no exact solution at all. Nonetheless, the overdetermined case is naturally
encountered when distribution-matching algorithms are implemented via binning
of the feature space X (DFx methods) or of the range of a continuous scoring
classifier (DFy methods), see Firat [7], Castaño et al. [4] and the references in the
latter paper. To work around the lack of exact solutions, typically approximate
solutions are determined by jointly minimising the di!erences between the left-
hand and right-hand sides of the equations with respect to some specific metric
like the Euclidean norm or the Hellinger divergence (see for instance Castaño et
al. [4]).

In the following, we focus on the cases of systems of ω and ω ⇐ 1 equations,
in the latter case together with constraint (2).

How should the random variables Z appearing in the equations of Theorem 1

be chosen? A very basic criterion for choosing the variables Z is that it must be
possible to compute them from observations of the features X only. This follows
from the fact that on the left-hand sides of the equations in Theorem 1, the
variables Z are integrated under the test distribution Q but the class labels Y
are not observed under Q. Hence one must make sure that Z = f(X) for some
function f .

6 D. Tasche

Among others, the following criteria for selecting such functions f have been
considered in the literature:
– Reducing the variances of the estimated qy. See Friedman [9] and Vaz et

al. [25] for approaches to the direct minimisation of the variance. Findings
by Vaz et al. [24] and Tasche [22] suggest that deploying variables Z that are
able to separate the classes with high accuracy also reduces the variances of
the class prior estimates.

– Speed of computation. See for instance Hassan et al. [11].

With the exception of Hassan et al. [11], in the literature primarily the choices
Z = 1Cy (hard classifier for one of the classes y in Y) and Z = P [Y = y|X]
(posterior probability under P for class y) have been considered. Below, we
consider Friedman’s [9] choices of hard classifiers and Z = P [Y = y|X] in more
detail.

4 Friedman’s method

Friedman [9] proposed two class distribution estimation methods:
– He discussed in detail one method (later called ‘Friedman’s method’ by

Schuhmacher et al. [18]) based on a specific choice of hard classifiers both
for the binary and multi-class cases. We revisit Friedman’s method in this
section.

– Another method, specified only for the binary case, is based on the variance
of the posterior positive class probability under the training distribution
(later called ‘DeBias’ method by Castaño et al. [4]). This method, without
being named, had been mentioned before by Tasche [21] as Corollary 6. We
discuss this approach in Remark 3 below.

First, we consider Friedman’s method in the binary case ω = 2. As Friedman
himself wrote he was not the first researcher to think about this method.

Method Max (Forman [8], Section 2.2). Forman wrote on page 173: “Consid-
ering the earlier discussion of small denominators, another likely policy is where
the denominator (tpr-fpr) is maximized: method Max.” Here, Forman referred to
crisp binary classifiers (not necessary most accurate) which were derived from a
‘raw classifier’ (i.e. a real-valued scoring classifier).

Accordingly, Friedman’s method in the binary case is the special case of
Forman’s method Max when the underlying scoring classifier is chosen as the
Bayes classifier, i.e. the posterior probability of the positive class.

Derivation of Friedman’s method. Firat [7] describes on p. 2 the rationale
for Friedman’s method as follows: “Friedman uses the optimum threshold that
minimizes the variance of proportion estimates (Friedman, 2014).” This state-
ment is somewhat misleading, as Friedman [9] actually does not maximise the
variance of the estimator but only the denominator on the right-hand side of the
following equation (in the notation of this paper)

q1 =
EQ[Z]⇐ EP [Z|y = 2]

EP [Z|y = 1]⇐ EP [Z|y = 2]
, (4)

Comments on Friedman’s Method 7

over all random variables 0 ⇒ Z = f(X) ⇒ 1. Note that (4) is a special case of
(3a) for ω = 2.

It turns out that

arg max
f :X↓[0,1]

EP [f(X)|y = 1]⇐ EP [f(X)|y = 2] = f↑ (5)

with f↑(x) = 1 if P [Y = 1|X = x] > p1, f↑(x) = 0 if P [Y = 1|X = x] < p1 and
f↑(x) arbitrary if P [Y = 1|X = x] = p1.

The solution to the problem of minimising the sample variance of the esti-
mator defined by (4) is less obvious. It has been tackled numerically by Vaz et
al. ([25], Section 2.3), and by Tian et al. [23] by involving influence functions.

Remark 1. Friedman [9] and subsequent users of his method appear to have
implemented it by means of plugging-in an estimate of the posterior probability
P [Y = 1|X] into the function f↑ as defined in (5). However, as P [Y = 1|X] could
be di"cult to estimate with satisfactory accuracy, such an implementation might
be suboptimal.

Note that (5) is equivalent to

arg min
f :X↓[0,1]

(1⇐p1)EP [f(X)1{Y=1}]+p1 EP [(1⇐f(X))1{Y=2}] = 1⇐f↑, (6)

with f↑ as in (5). (6) can be read as the problem to minimise the expected
cost-sensitive error for a binary classification problem. This problem can be
dealt with directly through a variety of approaches, resulting in approximations
of the optimal classifier which do not require the estimation of P [Y = 1|X].
The cost-sensitive minimisation problem can also be translated into a standard
classification problem by appropriate re-weighting (Zadrozny et al. [26]). ↘≃

Friedman’s method for more than two classes. Friedman [9] suggested defining
Zy = f↑

y (X) for y ↑ Y with f↑
y (x) = 1 if P [Y = y|X = x] > py, f↑

y (x) = 0 if
P [Y = y|X = x] ⇒ py, and then using (3a) with Zy, y = 1, . . . , ω, to obtain a
system of ω linear equations for the test prior probabilities of the classes y ↑ Y.

According to Schuhmacher et al. [18], Friedman’s method works well in bi-
nary quantification problems and still achieves good performance in multi-class
settings.

5 Uniqueness of solutions and covariance matrix-based
approaches

As discussed in Section 3, uniqueness of the solutions is an important design cri-
terion for setting up a system of linear equations for class distribution estimation
under prior probability shift. In this section, we provide more detail regarding
the number of equations needed and look closer at designs based on covariance
matrices estimated in the training dataset.

8 D. Tasche

5.1 How many equations are needed?

(3c) of Theorem 1 is interesting because the choice Z = P [Y = y|X] for fixed
y = 1, . . . , ω, implies the matrix identity




EQ

[
P [Y = 1|X]

]
⇐ p1

...
EQ

[
P [Y = ω|X]

]
⇐ pω



 = εP ⇑





q1
p1

...
qω
pω



 , (7)

εP =




covP

(
P [Y = 1|X], P [Y = 1|X]

)
. . . covP

(
P [Y = 1|X], P [Y = ω|X]

)

...
. . .

...
covP

(
P [Y = ω|X], P [Y = 1|X]

)
. . . covP

(
P [Y = ω|X], P [Y = ω|X]

)



 .

(7) connects the prior class probabilities py under the training distribution, the
prior class probabilities qy under the test distribution, and the averages under
the test distribution EQ

[
P [Y = y|X]

]
of the training posterior class probabilities

through the covariance matrix εP of the training posterior probabilities under
the training distribution. All quantities in (7) but the test class prior probabilities
qy can be estimated from the training dataset and the features in the test dataset
in principle. Hence, if the square matrix εP were invertible, (7) could be solved
for the qy by matrix inversion.

Unfortunately, as follows from the following proposition, the covariance ma-
trix εP is never invertible.

Proposition 1. Let Z1, . . . , Zr be integrable random variables under the dis-

tribution P . Suppose that Y is a discrete random variable with values in Y =
{1, . . . , ω} with ω → 2 and X is a random vector with values in X . Define the

matrices M = (mij)i=1,...,r
j=1,...,ω

and M↑ = (m↑
ij)i=1,...,r

j=1,...,ω
by

mij = cov(Zi, 1{Y=j}) and m↑
ij = cov

(
Zi, P [Y = j|X]

)
.

Then it follows that

rank(M) ⇒ ω⇐ 1 and rank(M↑) ⇒ ω⇐ 1.

Proof. Due to the fact that 1 =
∑ω

j=1 1{Y=j} and 1 =
∑ω

j=1 P [Y = j|X], the
vector v = (1, 1, . . . , 1)T ↑ Rω is an element of the kernels of M and M↑, i.e. it
holds that M ⇑ v = 0 = M↑ ⇑ v. This implies the assertion. ↘≃

As a consequence of Proposition 1, there is no possible choice of random
variables Z1, . . . , Zω that could serve on the basis of (3b) or (3c) to create a
system of ω linear equations with a unique solution for the ω unknowns q1, . . . , qω.
However, Proposition 1 leaves open the question if such an equation system can
be constructed on the basis of (3a).

Remark 2. For integrable random variables Z1, . . . , Zr, define the matrix M̃ =
(m̃ij)i=1,...,r

j=1,...,ω
by m̃ij = EP [Zi|Y = j].

Comments on Friedman’s Method 9

M̃ can be rewritten as
M̃ = L⇑D, (8a)

where

L =




EP [Z1 1{Y=1}] . . . EP [Z1 1{Y=ω}]

...
. . .

...
EP [Zr 1{Y=1}] . . . EP [Zr 1{Y=ω}]



 (8b)

and D = (dij)i,j=1,...,ω is the diagonal matrix with dij = 1
pi

if i = j and dij = 0

if i ↓= j. In particular, we have rank(D) = ω.
Define the vector v = (1, 1, . . . , 1)T as in the proof of Proposition 1. Then it

follows that L ⇑ v = (EP [Z1], . . . , EP [Zr])T . If Z1, . . . , Zr are chosen such that
(EP [Z1], . . . , EP [Zr]) ↓= 0, as a consequence L⇑ v ↓= 0 results. Hence there is no
obvious reason as in the case of Proposition 1 for the rank of L (and by (8a) also
of M̃) to be less than maximal, i.e. being equal to min(r, ω). This observation
suggests that (3a) can be used to obtain a system of ω linear equations with a
unique solution for the test class prior probabilities q1, . . . , qω. ↘≃

5.2 Invertible covariance matrices

The fact that the covariance εP of the posterior class probabilities P [Y = y|X],
y ↑ Y in (7) cannot be inverted is caused by the linear dependence between the
posterior probabilities since

∑ω
y=1 P [Y = y|X] = 1. This issue can be avoided

by disregarding one of probabilities, say P [Y = ω|X]. Indeed, making use of the
identity 1{Y=ω} = 1 ⇐

∑ω→1
y=1 1{Y=y} in (3b) produces the following corollary to

Theorem 1.

Corollary 1. Let py = P [Y = y] and qy = Q[Y = y] for y ↑ Y. Suppose that P
and Q are related through prior probability shift in the sense of Definition 1 and

that the random variable Z is integrable both under P and Q. Then it holds that

EQ[Z] =
∑ω→1

y=1


qy
py

⇐ qω
pω


covP

(
Z, 1{Y=y}

)
+ EP [Z]. (9a)

If Z is X-measurable, i.e. if there is a function f : X ↗ R such that Z = f(X),
then it also follows that

EQ[Z] =
∑ω→1

y=1


qy
py

⇐ qω
pω


covP

(
Z, P [Y = y|X]

)
+ EP [Z]. (9b)

Corollary 1 suggests the following approach to estimating the test class prior
probabilities q1, . . . , qω.

Corollary 2. Assume that the functions f1, . . . , fω→1 : X ↗ R are such that the

matrix

C =




cov(f1(X), 1{Y=1}) . . . cov(f1(X), 1{Y=ω→1})

.

.

.
. . .

.

.

.

cov(fω→1(X), 1{Y=1}) . . . cov(fω→1(X), 1{Y=ω→1})



 (10a)

10 D. Tasche

has rank ω⇐ 1, i.e. it is invertible.

Let
(
EQ[f1(X)] ⇐ EP [f1(X)], . . . , EQ[fω→1(X)] ⇐ EP [fω→1(X)]

)T
= z and

C→1 ⇑ z = (s1, . . . , sω→1)T .

Then it follows that

qy = py


sy + 1⇐

∑ω→1

i=1
pi si


, y = 1, . . . , ω⇐ 1, qω = pω


1⇐

∑ω→1

i=1
pi si


.

(10b)

Observe that as a consequence of the general properties of conditional expec-
tation5 matrix C of (10a) can be represented as

C =




cov(f1(X), P [Y = 1|X]) . . . cov(f1(X), P [Y = ω⇐ 1|X])

...
. . .

...
cov(fω→1(X), P [Y = 1|X]) . . . cov(fω→1(X), P [Y = ω⇐ 1|X])



 . (11)

With the special choice fy(X) = P [Y = y|X] for y = 1, . . . , ω⇐1 matrix C as rep-
resented in (11) becomes the covariance matrix of ε↑

P of P [Y = 1|X], . . . , P [Y =
ω⇐ 1|X].

Remark 3 (DeBias method). Suppose we are in the binary case ω = 2 and apply
Corollary 2 with C as given in (11) and f1(X) = P [Y = 1|X]. This implies
C = ε↑

P = var
[
P [Y = 1|X]

]
. We then obtain by means of (10b)

q1 =
p1 (1⇐ p1)

varP
[
P [Y = 1|X]

]
(
EQ

[
P [Y = 1|X]

]
⇐ p1

)
+ p1, (12a)

which is equivalent to

EQ

[
P [Y = 1|X]

]
= q1

varP
[
P [Y = 1|X]

]

p1 (1⇐ p1)
+ p1


1⇐

varP
[
P [Y = 1|X]

]

p1 (1⇐ p1)


.

(12b)

(12b) appears to have been first published by Tasche [21] (Corollary 6) and
then to have been presented at a conference by Friedman [9]. This approach to
estimating q1 has been called ‘DeBias’ method by Castaño et al. [4].

Hence, Corollary 2 with C = ε↑
P may be interpreted as multi-class extension

of the DeBias approach. ↘≃

Remark 4 (Probabilistic Adjusted Count (PAC)). Suppose again we are in the
binary case ω = 2 and apply Corollary 2, this time with C as represented in (10a)
and f1(X) = P [Y = 1|X]. This implies C = EP [

[
P [Y = 1|X]1{Y=1}

]
⇐ p21. We

then obtain by means of (10b)

q1 = p1 (1⇐ p1)
EQ

[
P [Y = 1|X]

]
⇐ p1

EP [
[
P [Y = 1|X]1{Y=1}

]
⇐ p21

+ p1 (13a)

5 See, for instance, Problem 34.6 of Billingsley [2]).

Comments on Friedman’s Method 11

which is equivalent to

q1 =
EQ

[
P [Y = 1|X]

]
⇐ EP

[
P [Y = 1|X]

 Y = 2
]

EP

[
P [Y = 1|X]

 Y = 1
]
⇐ EP

[
P [Y = 1|X]

 Y = 2
] . (13b)

(13b) was called ‘probability estimation & average (P&A)’ method by Bella et
al. [1] but is now commonly referred to as ‘probabilistic adjusted count (PAC)’
(González et al. [10]). Its multi-class extension is sometimes called ‘generalized
probabilistic adjusted count (GPAC)’ (see, for instance, Schuhmacher et al. [18])
and also covered by Corollary 2 with the choice fy(X) = P [Y = y|X] in (10a).

↘≃

Remark 5. Observe that in (13a) it holds that

EP [
[
P [Y = 1|X]1{Y=1}

]
⇐ p21 = varP

[
P [Y = 1|X]

]
.

By (12a), therefore in the binary case the DeBias and PAC methods for class
distribution estimation are identical at population level, i.e. with infinite train-
ing and test datasets. This observation is not necessarily true in practice when
DeBias and PAC estimates respectively are calculated based on sample versions
of (12a) and (13a). ↘≃

6 Comparing asymptotic variances

As mentioned in Section 2, we consider class distribution estimation as a two-
sample problem:

– A training sample for estimating certain quantities (e.g. the true positive and
false negative rates of a classifier) under the training distribution because
the quantities are needed for estimating the class prior probabilities under
the test distribution.

– A test sample for estimating the class prior probabilities under the test
distribution, based on the quantities estimated on the training sample.

Hence minimising the error of a method for class distribution estimation means
minimising the estimation errors on the two samples.

In the following, we look at the semi-asymptotic binary case (ω = 2) where

– the training distribution P is known (infinite sample) such that the prior
class probabilities py and the posterior class probabilities P [Y = y|X] can
be exactly determined in the sense that the estimation error on the training
sample vanishes.

– From the test distribution a finite but large sample of size n is given, and
we focus upon unbiased estimators of the class prior probabilities.

For unbiased estimators the Cramér-Rao lower bound specifies a minimum value
for the variance that cannot be undercut. Denote by qML

n the maximum-likelihood

12 D. Tasche

(ML) estimator of the test prior probability q1 of class 1 and by ϑ2
ML its so-called

asymptotic variance. Then ε2
ML
n is the Cramér-Rao lower bound for the variances

of the unbiased estimators of q1 on test samples of size n when the training dis-
tribution is known (called here ‘asymptotic setting’), see Section 5 of Tasche [22].

We compare ϑ2
ML with the asymptotic variances in the sense of Definition

10.1.9 of Casella and Berger [3] of the Friedman estimator qFried
n and the DeBias

estimator qDeBias
n of the test prior probability q1 of class 1.

We assume that both the conditional distribution of X given Y = 1 and the
conditional distribution of X given Y = 2 have densities g1 > 0 and g2 > 0
with respect to some measure6 µ. In particular, then the posterior probability
P [Y = 1|X = x] can be represented as

P [Y = 1|X = x] =
p1 g1(x)

p1 g1(x) + (1⇐ p1) g2(x)
, (14)

and the density of the feature vector X under the test distribution Q is given by

gQ = q1 g1 + (1⇐ q1) g2. (15)

Since the training distribution P is assumed to be known, in the following all
expected values EP [Z] are deterministic values that need not be estimated. In
particular, also the prior probabilities p1 and p2 = 1⇐ p1 are known constants.
In contrast, the test distribution Q is not known but an i.i.d. sample X1, . . . , Xn

of the feature vector X drawn from its distribution under Q is observed.
ML estimator. For a detailed description of the ML estimator qML

n (X1, . . . , Xn)
= qML

n we refer to Section 4 of Tasche [22], as there is no closed-form represen-
tation of the ML estimator. However, its asymptotic variance ϑML under Q is
known:

ϑ2
ML = EQ

g1(X)⇐ g2(X)

gQ(X)

2
→1

=
q21 (1⇐ q1)2

varQ
[
EQ[Y = 1|X]

] . (16)

ϑ2
ML is characterised through the property that

⇓
n
(
qML
n ⇐ q1

)
converges in

distribution toward the normal distribution with mean 0 and variance ϑ2
ML.

Observe that ϑ2
ML is a function of q1 but not of p1.

Friedman estimator. In the binary case, under the assumption on semi-
asymptotics made for this section, the Friedman estimator qFried

n (X1, . . . , Xn)
= qFried

n based on the homonymous method presented in Section 4 can be writ-
ten as

qFried
n =

1
n

∑n
i=1 f

↑(Xi)⇐ EP [f↑(X)|y = 2]

EP [f↑(X)|y = 1]⇐ EP [f↑(X)|y = 2]
, (17a)

with f↑ defined through (5). Friedman [9] observed that f↑ can also be repre-
sented as

f↑(x) =


1, if g1(x) > g2(x),

0, if g1(x) ⇒ g2(x).
(17b)

6 In Example 1 below µ is the Lebesgue measure on R.

Comments on Friedman’s Method 13

As a consequence of (17b), the right-hand side of (17a) does not depend on p1 or
p2 for f↑(X) or any of the f↑(Xi). Therefore, also qFried

n as defined in (17a) does
not change if p1 or p2 are changed. From the central limit theorem, it follows
that

⇓
n (qFried

n ⇐q1) under Q converges toward a normal distribution with mean
0 and variance ϑ2

Fried. More precisely, the asymptotic variance of qFried
n is

ϑ2
Fried =

EQ[f↑(X)]
(
1⇐ EQ[f↑(X)]

)

(EP [f↑(X)|y = 1]⇐ EP [f↑(X)|y = 2])2
. (17c)

DeBias estimator. In the binary case, under the assumption on semi-asymp-
totics made for this section, the DeBias estimator qDeBias

n = qDeBias
n (X1, . . . , Xn)

based on the method presented in Remark 3 can be written as

qDeBias
n =

p1 (1⇐ p1)

varP
[
P [Y = 1|X]

]

1

n

∑n

i=1
P [Y = 1|X = Xi]⇐ p1


+ p1. (18a)

From the central limit theorem, it follows that
⇓
n (qDeBias

n ⇐ q1) under Q con-
verges toward the normal distribution with mean 0 and variance ϑ2

DeBias, or more
precisely, the asymptotic variance of qDeBias

n is

ϑ2
DeBias =


p1 (1⇐ p1)

varP
[
P [Y = 1|X]

]
2

varQ
[
P [Y = 1|X]

]
. (18b)

Note that it follows from (16) and (18b) that ϑ2
ML = ϑ2

DeBias in the case of no
shift, i.e. p1 = q1. As all quantities derived from P are assumed to be constant in
the setting of this section, it follows as in Remark 5 that the asymptotic variance
ϑ2

PAC of the PAC estimator discussed in Remark 4 is identical with ϑ2
DeBias, i.e.

ϑ2
DeBias = ϑ2

PAC. For this reason, PAC is omitted from the following numerical
example.

Example 1. We consider the same univariate binormal model with equal vari-
ances of the class-conditional distributions as in Section 7 of Tasche [22]: The
two normal class-conditional distributions of the feature variable X are given by

X |Y = i ⇔ N (µi,ϑ
2), i = 1, 2 (19a)

for conditional means µ2 < µ1 and some ϑ > 0. We choose

µ1 = 1.5, µ2 = 0, and ϑ = 1. (19b)

The model is then completely specified by choosing p1 = 0.15 for the training
prior probability of class 1. The test prior probability q1 of class 1 is not fixed
as we calculate asymptotic variances of the three above-mentioned prior dis-
tribution estimators for the whole range (0, 1) of q1. The results are shown in
Figure 1. ↘≃

The following observations can be made from Figure 1:

14 D. Tasche

Test prior probability

As
ym

pt
ot

ic
 v

ar
ia

nc
e

0.0 0.2 0.4 0.6 0.8 1.0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

ML
DeBias
FM

Fig. 1. Asymptotic variances of maximum likelihood estimator, DeBias estimator and
Friedman estimator in a binormal model. See Example 1 for the specification of the
underlying model.

– The asymptotic variance of the ML estimator is uniformly lower than the
asymptotic variances of the other estimators for the whole possible range of
the test prior probability of class 1 as is to be expected as a consequence of
the Cramér-Rao inequality.

– The asymptotic variance of the Friedman estimator is not uniformly lower
than the asymptotic variance of the DeBias estimator and vice versa.

– The DeBias estimator is almost optimal in the vicinity of the training prior
probability (p1 = 0.15) of class 1, as a consequence of (16) and (18b).

– In contrast, the asymptotic variance of the DeBias estimator is much larger
than the asymptotic variance of the Friedman estimator in the (0.8, 1) range
of the test prior probability that is far away from the training prior proba-
bility 0.15.

7 Conclusions

We have considered Friedman’s [9] method in the context of a general frame-
work for designing linear equation systems for class distribution estimation and
compared its binary version with DeBias which is another method proposed by
Friedman, and the maximum likelihood estimator. The main findings of this
paper are the following:

Comments on Friedman’s Method 15

– The population versions of DeBias and Probability Adjusted Count (PAC,
Bella et al. [1]) are identical and the binary special case of a new estimation
approach based on inverting the covariance matrix of the training posterior
class probabilities (see Section 5.2).

– Although the definition of Friedman’s method appears to involve evaluations
of the posterior probabilities under the training distribution, the method is
potentially less sensitive to inaccuracies of the posterior estimates on smaller
training datasets than the maximum likelihood estimator. This is a conse-
quence of the fact that Friedman’s methode can be implemented without a
need to estimate the training posterior class probabilities (see Section 4).

– As shown in Example 1, Friedman’s method may be locally outperformed in
terms of asymptotic variance by DeBias. But thanks to its independence of
the training prior class probabilities its performance is relatively uniform over
the full range of possible values of the test prior probability of the positive
class (class 1 in Example 1), in contrast to DeBias’ poor performance for
test prior probabilities which are very di!erent to the corresponding training
prior probability.

Acknowledgments. The author would like to thank three anonymous reviewers for
their useful comments and suggestions.

References

1. Bella, A., Ferri, C., Hernandez-Orallo, J., Ramírez-Quintana, M.: Quantification
via probability estimators. In: Data Mining (ICDM), 2010 IEEE International Con-
ference on Data Mining. pp. 737–742. IEEE (2010)

2. Billingsley, P.: Probability and measure. John Wiley & Sons, second edn. (1986)
3. Casella, G., Berger, R.: Statistical Inference. Duxbury Press, second edn. (2002)
4. Castaño, A., Alonso, J., González, P., Pérez, P., del Coz, J.: QuantificationLib: A

Python library for quantification and prevalence estimation. SoftwareX 26 (2024).
https://doi.org/10.1016/j.softx.2024.101728

5. Donyavi, Z., Serapião, A., Batista, G.: MC-SQ: A Highly Accurate Ensemble for
Multi-class Quantification. In: Proceedings of the 2023 SIAM International Con-
ference on Data Mining (SDM). pp. 622–630. SIAM (2023)

6. Esuli, A., Fabris, A., Moreo, A., Sebastiani, F.: Learning to Quantify. Springer
Cham (2023). https://doi.org/https://doi.org/10.1007/978-3-031-20467-8

7. Firat, A.: Unified framework for quantification. arXiv preprint arXiv:1606.00868
(2016)

8. Forman, G.: Quantifying counts and costs via classification. Data Mining and
Knowledge Discovery 17(2), 164–206 (2008)

9. Friedman, J.: Class counts in future unlabeled samples. Presentation at MIT
CSAIL Big Data Event (2014)

10. González, P., Castaño, A., Chawla, N., Coz, J.D.: A Review on Quantification
Learning. ACM Comput. Surv. 50(5), 74:1–74:40 (2017)

11. Hassan, W., Maletzke, A., Batista, G.: Accurately Quantifying a Billion Instances
per Second. In: 2020 IEEE 7th International Conference on Data Science and
Advanced Analytics (DSAA). pp. 1–10 (2020)

https://doi.org/10.1016/j.softx.2024.101728
https://doi.org/10.1016/j.softx.2024.101728
https://doi.org/https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/https://doi.org/10.1007/978-3-031-20467-8

16 D. Tasche

12. Hofer, V., Krempl, G.: Drift mining in data: A framework for addressing drift in
classification. Computational Statistics & Data Analysis 57(1), 377–391 (2013)

13. Krempl, G., Hofer, V., Webb, G., Hüllermeier, E.: Beyond Adaptation: Under-
standing Distributional Changes (Dagstuhl Seminar 20372). Dagstuhl Reports
10(4), 1–36 (2021). https://doi.org/10.4230/DagRep.10.4.1

14. Lipton, Z., Wang, Y.X., Smola, A.: Detecting and Correcting for Label Shift with
Black Box Predictors. In: Dy, J., Krause, A. (eds.) Proceedings of the 35th In-
ternational Conference on Machine Learning. Proceedings of Machine Learning
Research, vol. 80, pp. 3122–3130. PMLR (10–15 Jul 2018)

15. Moreno-Torres, J., Raeder, T., Alaiz-Rodriguez, R., Chawla, N., Herrera, F.: A
unifying view on dataset shift in classification. Pattern Recognition 45(1), 521–
530 (2012)

16. Saerens, M., Latinne, P., Decaestecker, C.: Adjusting the Outputs of a Classifier
to New a Priori Probabilities: A Simple Procedure. Neural Computation 14(1),
21–41 (2002). https://doi.org/10.1162/089976602753284446

17. San Martín, E., Quintana, F.: Consistency and identifiability revisited. Brazilian
Journal of Probability and Statistics pp. 99–106 (2002)

18. Schumacher, T., Strohmaier, M., Lemmerich, F.: A comparative evaluation of quan-
tification methods. arXiv preprint arXiv:2103.03223 (2021)

19. Serapião, A., Donyavi, Z., Batista, G.: Ensembles of Classifiers and Quantifiers
with Data Fusion for Quantification Learning. In: Bifet, A., Lorena, A., Ribeiro, R.,
Gama, J., Abreu, P. (eds.) Discovery Science. pp. 3–17. Springer Nature Switzer-
land, Cham (2023)

20. Storkey, A.: When Training and Test Sets Are Di!erent: Characterizing Learning
Transfer. In: Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence,
N. (eds.) Dataset Shift in Machine Learning, chap. 1, pp. 3–28. The MIT Press,
Cambridge, Massachusetts (2009)

21. Tasche, D.: Exact fit of simple finite mixture models. Journal of Risk and Financial
Management 7(4), 150–164 (2014)

22. Tasche, D.: Minimising quantifier variance under prior probability shift. In: Cong,
G., Ramanath, M. (eds.) Proceedings of the CIKM 2021 Workshops (2021), first
International Workshop on Learning to Quantify: Methods and Applications (LQ
2021)

23. Tian, Q., Zhang, X., Zhao, J.: ELSA: E"cient Label Shift Adaptation through the
Lens of Semiparametric Models. In: Proceedings of the 40th International Confer-
ence on Machine Learning. ICML’23 (2023), https://proceedings.mlr.press/v202/

24. Vaz, A., Izbicki, R., Stern, R.: Prior Shift Using the Ratio Estimator. In: Polpo, A.,
Stern, J., Louzada, F., Izbicki, R., Takada, H. (eds.) International Workshop on
Bayesian Inference and Maximum Entropy Methods in Science and Engineering.
pp. 25–35. Springer (2017)

25. Vaz, A., Izbicki, R., Stern, R.: Quantification Under Prior Probability Shift: the
Ratio Estimator and its Extensions. Journal of Machine Learning Research 20(79),
1–33 (2019), http://jmlr.org/papers/v20/18-456.html

26. Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate
example weighting. In: Third IEEE International Conference on Data Mining. pp.
435–442 (2003). https://doi.org/10.1109/ICDM.2003.1250950

27. Zhang, K., Schölkopf, B., Muandet, K., Wang, Z.: Domain Adaptation Under Tar-
get and Conditional Shift. In: Proceedings of the 30th International Conference on
International Conference on Machine Learning – Volume 28. pp. III–819–III–827.
ICML’13, JMLR.org (2013)

https://doi.org/10.4230/DagRep.10.4.1
https://doi.org/10.4230/DagRep.10.4.1
https://doi.org/10.1162/089976602753284446
https://doi.org/10.1162/089976602753284446
https://proceedings.mlr.press/v202/
http://jmlr.org/papers/v20/18-456.html
https://doi.org/10.1109/ICDM.2003.1250950
https://doi.org/10.1109/ICDM.2003.1250950

Quantification Over Time

Feiyu Li, Hassan H. Gharakheili, and Gustavo Batista ()

University of New South Wales, Sydney NSW 2052, Australia
{feiyu.li, h.habibi, gbatista}@unsw.edu.au

Abstract. Quantification is the supervised machine learning task that
estimates the class distribution in a sample. Therefore, quantification ap-
plications typically involve predicting aggregated quantities, such as the
prevalence of positive comments about a product, personality or com-
pany on a set of social media posts. However, quantification analysis is
more informative when performed over time, such as when we are inter-
ested in tracking public opinion on social media and relating changes in
opinion with relevant events. The vast majority of the literature considers
quantification as a standalone task, assuming the output of quantifiers
to be independent even when applied to temporal data. This paper pro-
poses a new quantification task, Quantification over Time (QoT), that
allies quantification with time series forecasting methods. We propose
an approach based on the Kalman filter, which can help improve the
performance of standalone quantifications and a general framework that
includes both ours and SOTA methods. In an experimental comparison
with several textual datasets and numeral datasets, we show that our
method outperforms existing methods for QoT in the literature, such
as a simple composition of the classify and count method with moving
averages and ReadMe2 as a standalone quantifier. We also show that
our proposal can outperform several baselines, including recently pro-
posed quantifiers used as standalone approaches. Codes are available at
https://github.com/frieli11/quantification-over-time

Keywords: Machine learning · class distribution estimation · quantifi-
cation · time series · Kalman filter.

1 Introduction

Quantification is the supervised Machine Learning task defined by Forman [9] as
the induction of a system “that takes an unlabeled test set as input and returns

its best estimate of the number of cases in each class.” This definition opposes
quantification to classification that focuses on predicting individual instances’
labels. Therefore, quantification finds application in areas where we are inter-
ested in understanding the behaviour of groups instead of predicting the class
of individuals.

The simplest existing quantifier is Classify and Count (CC). It consists of
the direct application of classifiers to quantification problems. This approach
classifies each instance in the unlabeled set and counts the number of instances

https://github.com/frieli11/quantification-over-time

18 F. Li et al.

predicted in each class. CC is a biased quantifier, as previous research [8,9]
showed a systematic error that increases linearly as the unlabeled set class dis-
tribution di!ers from the classifier’s training distribution. CC’s limitations have
led to the proposal of several recent quantifiers that can accurately estimate the
class distribution for a wide range of class prevalence.

Quantification papers have accessed their proposals as standalone methods,
in which the current decision relies only upon the current data and ignores
previous quantifications. The main reason is that the quantification literature has
adopted the Artificial Prevalence Protocol (APP) in their experimental setups.
The APP uses subsampling on a classification dataset to create many test sets
with varying class distributions. However, such experimental protocol does not
match how quantifiers are often used in practice. As Forman noticed in his
seminal work [9], quantifiers are useful “to monitor for changes or trends in the

class distribution over time.”
For example, a standalone quantification can estimate a presidential candi-

date’s approval rate based on posts on social media from a certain period, such
as the last 24 hours [26]. However, a more fundamental question is how the pub-
lic support of the candidate varies over the election period, leading to a series of
quantifications that are likely to show time dependency. Fig. 1 shows how Biden
and Trump supporters’ online activity relates to events such as the candidate’s
debates [1]. Other examples of applications requiring quantification over time are
disease-vector mosquito [6] and pollinator surveillance [20] and disease outbreak
forecasting [15].

Fig. 1. Prevalence of polarized tweets on di!erent presidential candidates from Sept.
1 to Oct. 31, 2020. Adapted from [1].

This paper introduces Quantification over Time (QoT), a quantification task
that allies time series forecasting and quantification. In QoT, a series of quan-
tifications give origin to a time series. The objective of QoT is to provide an
accurate estimate of the class distribution for an unlabeled set St given the data
in this set and previous estimates for unlabelled sets S1, . . . , St→1.

Quantification Over Time 19

This paper also proposes KF-MA, which integrates the Kalman filter and
moving average, aiming to adjust the result from a standalone quantification for
QoT without increasing the requirement for extra labelled data. An algorithm
framework is also introduced to conclude how selected time series forecasting
methods conduct the adjustment in both KF-MA and state-of-the-art methods.
We compare KF-MA with observed methods in literature on several textual and
numeral datasets. We demonstrate in our experiments how KF-MA outperforms
the state-of-the-art. We evaluate KF-MA in various conditions, including dif-
ferent classifiers and recently proposed quantifiers. The results show that our
proposal provides evident improvements in the estimations of standalone quan-
tifications.

This paper is organized into the following sections. Section 2 formalizes the
quantification over time task and defines the notation used throughout this pa-
per. Section 3 reviews the relevant literature, including the methods incorporated
in our experimental comparison. Section 4 introduces our proposed approach.
Section 5 describes the experiment settings and discusses the results. Section 6
provides our concluding remarks and suggests future developments of quantifi-
cation over time.

2 Definitions, Notation and Background

This section formalizes the task of Quantification over Time (QoT). We start
defining the quantification task to highlight the similarities and di!erences be-
tween these two tasks.

2.1 Quantification

Quantification is a supervised machine learning task that predicts the class
prevalence (prior probability or relative frequency) in an unlabeled dataset. Like
other Machine Learning tasks, quantification requires a training set Dtrain =
{(xi, yi)}Ni=1 which is a collection with N examples, where each example xi → X
is a vector with M attributes, and yi → L = {lj}Lj=1 is the class label associated
with xi. The goal of quantification is to learn a function h from Dtrain such that:

h : 2X ↑ ω
L (1)

where 2X is the power set of X , i.e., the set with all possible sets of samples
with the representation X . ωL is the L-probability simplex defined as:

ω
L = {{pi}Li=1|pi → [0, 1],

L∑

i=1

pi = 1} (2)

Given an unlabelled set S → 2X , h returns an L-dimensional vector p̂ =
[p̂1, p̂2, . . . , p̂L]↑, such that

∑L
i=1p̂i = 1. The function h is the quantifier, and p̂

is the estimated class prevalence in set S.

20 F. Li et al.

2.2 Quantification over Time (QoT)

QoT requires a dataset with timestamps so instances can be grouped in periods
of interest, such as hours, days or weeks. For some time t, there is an unlabelled
sample St and a set of quantified class prevalences of previous samples, S1 to
St→1, represented as a vector ω̂t→1 = [p̂1, p̂2, . . . , p̂t→1]. Each p̂i is a vector
with the estimated class prevalences for the set Si. The goal of QoT is to find a
function g such that:

g : (ω̂t→1, St) ↑ ω
L (3)

where g returns the class distribution estimate for St considering previous esti-
mates in ω̂t→1.

2.3 QoT, quantification and time series forecasting

QoT relates to quantification and time series forecasting in the following ways:

– If g only relies on data from St, then g = h, i.e., the QoT quantifier will
ignore the time dependency of the quantifications.

– If g only uses ω̂t→1, then g as a time series forecasting model with the addi-
tional constraint that the estimates must be a valid probability distribution.

Therefore, we can understand QoT as a research task at the intersection
of time series forecasting and quantification. However, we must emphasize that
existing methods from these two areas are inappropriate solutions for the QoT
problems since:

1. Time series forecasting models assume a prediction horizon, which is the
number of time steps ahead that the models should estimate. QoT problems
have an infinite prediction horizon. For most QoT applications, we should
never expect to receive labels for the unlabelled sets St. Suppose we use time
series forecasting models for QoT problems by inputting forecasts into the
model. In that case, we can expect that the error accumulation will make
the model forecasts excessively inaccurate after a long period.

2. Quantification methods ignore the time dependency of the estimates. The
incorporation of time information provides the model with an expected rate
of change. This work hypothesizes that incorporating historical information
with the current quantification provides more accurate estimates.

To conclude this section, we provide additional details about how most QoT
applications work in practice regarding label availability. We use the social media
sentiment analysis from Section 1 as an example.

For most QoT applications, we should not expect to see class labels after the
system deployment. In the case of social media, we should not expect humans
to label any posts manually during the system’s operation. However, we often
have a labelled dataset to train and tune the model’s hyperparameters. We

Quantification Over Time 21

simulate this condition in our experiments by using the initial samples in the
data stream as a training/validation set. This situation di!ers significantly from
the typical operation of time series forecasting models. In regression applications,
it is common for the target information to auto-reveal after the forecast horizon
has passed. For instance, if we predict stock prices over 24 hours, we will know
the actual value of the stocks after this period. This allows us to feed these actual
prices to the model when we need to provide a forecast for the next horizon.

The lack of labels after model deployment gives the impression that the
QoT task will accumulate errors, providing inaccurate predictions for longer
forecast windows, as would happen if we fed time series forecasting methods with
estimates instead of actual values. However, QoT inherits a pivotal assumption
from quantification: Pte(X|Y) = Ptr(X|Y), i.e., the conditional distribution of
the features given the class remains constant from training to test.

This assumption is reasonable for most applications. In the sentiment analysis
example, P (X|Y) captures the relationship between words and sentiments and
is mostly constant with small changes in the long term as the language evolves.
Under this assumption, the quantifiers can provide relatively accurate prevalence
predictions that will not allow the time series forecaster to drift away from reality.
At the same time, the time series forecaster will provide temporal dependency
to the quantifier, allowing it to improve its predictions.

3 Related Work

Due to the popularity of sentiment analysis for social media and the fact that
social media posts are timestamped, plenty of research papers quantify sentiment
over time. However, these papers fall into two categories: The first uses the
classify and count quantifier without temporal information, and the second uses
the same quantifier with a moving average to smooth the predicted prevalences.

Before reviewing the relevant literature, we should understand why the CC
quantifier is a suboptimal choice despite its popularity in the sentiment analysis
community [18]. Classify and count is a biased quantifier because the classifier
assumes that the training and test samples come from the same underlying
distribution. However, in quantification problems, the class distribution of the
test samples can di!er significantly from the test distribution.

Let us suppose that a binary-class classifier is trained with a balanced dis-
tribution. In this case, when the positive class prevalence increases, the CC
quantifier tends to underestimate the prevalence of the positives. Essentially,
the classifier expects the test samples to have the same class distribution as the
training samples and thus pushes the class estimates towards a 50%/50% esti-
mate. Similarly, when the prevalence of positives decreases, the same quantifier
tends to overestimate its prevalence.

Forman [8,9] provides a formal analysis of the CC quantifier error and shows
that it increases linearly as the test class distribution moves away from the
training distribution. The classifier error, specifically the di!erence between the
true positive and negative rate, defines the error slope.

22 F. Li et al.

Fig. 2. A comparison of the performance of the classify and count (CC) quantifier
with and without moving average (MA). The classifier was trained with a balanced
training set with signals from female Anopheles funestus and Culex quinquefasciatus
mosquitoes. CC underestimates high prevalences and overestimates low prevalences.
CC+MA performs even worse as the moving average operates as a low-pass filter.

Fig. 2 illustrates this issue in a mosquito surveillance dataset. The data repre-
sents the number of Anopheles funestus mosquitoes captured by a mosquito trap
that uses Machine Learning classifiers to recognize the mosquito species based
on data collected from their wing movement. We trained a Machine Learning
classifier with a balanced distribution of mosquitoes, which achieved a respectful
80% accuracy. When test class distribution increases, the CC quantifier under-
estimates the species prevalence. Such underestimation is proportional to the
species prevalence and achieves its highest value for the peak at hour 50. The
opposite occurs when class prevalence decreases, as we can observe at hour 12.

An even worse behavior occurs when we apply a moving average of win-
dow size of 4 hours to the classify and count output. As we will see later in
this section, this is a popular approach in the sentiment analysis community. A
moving average operates as a low-pass filter, providing a smoother sequence of
predictions but worsening the under/over-estimation issue.

In the next two sections, we briefly summarize the relevant literature. Sec-
tion 3.1 focuses on papers that approach the QoT problem using quantifiers only
without incorporating time information. Section 3.2 summarizes the related work
that combines the classify and count quantifier with a moving average.

3.1 QoT with quantification only

The literature contains various studies quantifying sentiments on social platforms
over time and exploring the relations between public opinions online and real-
world events. The vast majority of the relevant papers use the classify and count
quantifier. We believe such a poor design decision can only be explained by a
lack of understanding of the classification and count quantifier’s limitations in
the sentiment analysis community.

Quantification Over Time 23

In what follows, we provide some examples of sentiment analysis papers that
use the classify and count quantifier to solve QoT problems. Bollen et al. [2]
investigate whether measurements of collective mood states derived from large-
scale Twitter feeds correlate to the value of the Dow Jones Industrial Average
(DJIA) over time. Borge-Holthoefer et al. [3] track the public opinion dynamics
about political events in Egypt on Twitter and analyze the motivation of people
switching political polarization. They believe that tracking the relevant change
of proportions of the sentiment index instead of absolute values might diminish
the quantification bias. Lamsal [15] analyzes tweets about COVID-19, aiming to
understand the public opinion patterns related to the ongoing pandemic. Liu et
al. [16] also study the aggregate sentiments on Twitter over time based on an
algorithm related to CC to predict the presidential election. Notably, the authors
claim their trained classifier with an evaluated accuracy of 57%, as it should be
predictably biased when deploying classify and count.

Few papers use a quantifier other than classify and count in QoT applica-
tions. Hopkins and King [10] analyze the impact of political speech incidents on
blog sentiments toward candidates. Aware of the bias of the classify and count
quantifier, they propose ReadMe to quantify sentiments over time. Similarly,
Ceron et al. [4] conducted sentiment analysis on tweets to estimate the distri-
bution flow of citizens’ political preferences. They also use ReadMe, applying
this quantifier across time while disregarding eventual time dependency among
forecasted prevalences.

3.2 QoT with classify and count and moving average

There is abundant literature in sentiment analysis that uses the classify and
count quantifier with moving averages. The moving average can be seen as a
basic time series analysis method that incorporates time dependency to smooth
prevalence forecasts. Overall, the papers summarized in this section employ mov-
ing averages to improve the visualization of trends.

O’Connor et al. [19] argue social media sentiment can serve a role similar
to that of traditional polling and surveys. The authors acknowledge the impact
of misclassification on the estimates generated by the classify and count quan-
tifier. However, they think the occurrence of false positives and negatives would
balance each other out when aggregating the sentiment. Wen et al. [25] use a
3-day sliding window alongside the CC quantifier on sentiment polarity analy-
sis to understand students’ opinions towards the course and course tools. They
also believe that false positives and negatives could potentially o!set each other
during the counting of classified instances.

Both O’Connor et al. [19] and Wen et al. [25] make the incorrect assumption
that the classify and count is potentially an accurate quantifier as the errors
nullifying each other. In fact, if a binary classifier makes the same number of
false positive and negative errors, the quantification can be flawless despite the
imperfection of the classifier [9]. However, as the test class distribution changes,
one type of error may prevail. For instance, a classifier may make the equal
number of false positive and negative misclassifications in a balanced training

24 F. Li et al.

set. However, if the prevalence of positive instances increases to 90% in a test
sample, then the number of false negative misclassifications will surpass the false
positives, causing the classifier to underestimate the positives, as shown in Fig. 2.

In addition, Lai [14] correlates the sentiment trend on Twitter with a tradi-
tional presidential performance poll. The author applies a moving average to the
survey data, which the paper regards as a gold standard for the sentiment trend.
Rani and Kumar [21] focus on sentiment analysis within teaching research. They
propose a system that analyzes student feedback sourced from online platforms
and course surveys. A method similar to moving average, called a mean emotion
vector, is used to smooth the quantified results.

4 Methodology

This section presents our proposed method, Kalman Filter-Moving Average (KF-
MA), for QoT problems. KF-MA is part of a more general framework that we
name the adjustment framework. Such a framework also includes approaches
based on the moving average, popularly employed in the sentiment analysis
literature. We first introduce the framework in Section 4.1 and then introduce
KF-MA in Section 4.2.

4.1 Adjustment Framework

Our framework adjusts class prevalence estimates for a sample St collected at a
time point t by leveraging existing quantifiers and the temporal dependency of
previous prevalence estimates.

𝑆11

3

𝑛

2
Quantifier

ℎ

TS Forecaster
𝑓

Adjustment Framework
ො𝑝𝑡,𝑖 = 𝛼𝑜𝑡,𝑖 + 1 − 𝛼 𝑦𝑡,𝑖

ෝ𝐩𝑡

tim
e

Norm
alization

Observation

Forecast

Estimate

𝑆2

𝑆3

𝑆𝑛

𝑆𝑡

𝑜𝑡,1
𝑜𝑡,2
⋮

𝑜𝑡,𝐿

𝑦𝑡,1
𝑦𝑡,2
⋮

𝑦𝑡,𝐿

ො𝑝𝑡,1
ො𝑝𝑡,2
⋮
ො𝑝𝑡,𝐿

𝐲𝑡

𝐨𝑡

ෝ𝐩𝑡−1
ෝ𝐩𝑡−2

ෝ𝐩𝑡−𝑚

ෝ𝐩1

Fig. 3. A general view of the adjustment framework for QoT, which integrates predic-
tions from a quantifier and a time series forecaster, having inputs from last m estimates.

We use the standard nomenclature of the Probabilistic Graphical Model lit-
erature and name the output of quantifiers as observations. At time point t, we
have an observation ot = [ot,1, ot,2, · · · , ot,L]↑ = h(St) from a quantifier h, be-
ing ot,i the observation corresponding to the estimate of class li’s true prevalence

Quantification Over Time 25

pt,i. Besides, we have a forecast yt = [yt,1, yt,2, · · · , yt,L]↑, where yt,i = f(ω̂t→1)
is the prevalence prediction for class li We integrate these two predictions into
a single value

p̂t,i = ε ot,i + (1↓ ε) f(ω̂t→1) (4)
as the estimate of the true prevalence. For time series forecaster f , a model

that does not require a large-scale training process is preferred. The reason is
that deploying non-trivial time series analysis methods, such as recurrent neuron
networks and autoregression models, requires high cost of data, while manually
labelling enough data for training those methods is cumbersome in QoT tasks
as time series in QoT is di!erent from most that out of streaming data, each
data point of time series in QoT is an aggregated mark over a sample instead of
an instance.

ω̂t→1 is generallized as a representation of historical information. It can be
set to storing either the previous integrated estimates p̂ or previous observation
o, which can be found in the literature and will be discussed in the following
section. In addition, this historical information may encompasses only the last
m observations, where m is a hyperparameter that limits how long the method
can observe from the past.

The p̂t,i are not necessarily normalized in the sense that
∑L

i p̂t,i ↔= 1. We thus
normalize these predictions to turn them into a probability distribution. Fig. 3
illustrates this general approach that we named the adjustment framework.

In the remainder of this text, we simplify the notation by dropping the i

index from symbols such as pt,i, ot,i, and yt,i. The reason is that the methods
in the adjustment framework often work with one class at a time. Therefore,
for a multi-class problem, these methods make L ↓ 1 independent predictions
integrated in the normalization step.

In the remainder of this section, we discuss how the moving average (MA)
approach integrates into our framework. We will use it later as a baseline for com-
parison with our proposed methods. O’Connor et al. [19] was the first to apply
MA to QoT problems. They started with daily sentiment ratios [o1, o2, . . . , on]
of positive and negative tweets obtained with the Classify and Count method
(CC). The authors adjusted each ratio using a m-size window as follows:

p̂t =
1

m
(ot→m+1 + ot→m+2 + . . .+ ot)

=
m↓ 1

m

(ot→m+1 + ot→m+2 + . . .+ ot→1)

m↓ 1
+

1

m
ot (5)

Notice that, as they work with binary-class problems, they can track only
the positive class prevalence and estimate the negative prevalence, as both need
to sum to one.

According to Eq. (4), we have yt = f(om
t) = (ot→m+1+ot→m+2+...+ot→1)

m→1 and
ε = 1

m . Note that, for MA, with a fixed window size m, the weights of prediction
and observation are static, and it primarily presents a retrospective average
without e!ectively capturing trends.

26 F. Li et al.

4.2 KF-MA

Our proposal, Kalman Filter-Moving Average (KF-MA), introduces a dynamic
weighting approach for parameter ε between observations and predictions. KF-
MA uses moving average as a time series forecasting function f and Kalman
filter [13] to the adjustment framework.

Kalman filter [13] is a recursive algorithm for estimating the state of a dy-
namic system. It assumes all uncertainties from the environment, observation
and hidden states are Gaussian distributed.

When using a Kalman filter to estimate a dynamic system with no known
external influence, where the scales of measurement and states are identical, for
state st, there is an observation Ot ↗ N (µot , R), where R is from the i.i.d.1
random error of each measurement. A Kalman filter also models a forecast as
X

↓
t ↗ N (µx↑

t
,ϑx↑

t
), such that:

{
µx↑

t
= F µxt→1

ϑx↑
t
= F ϑxt→1 F

↑ +Qt
(6)

where Xt→1 ↗ N (µxt→1 ,ϑxt→1) is an estimate of st→1, and F is the matrix encap-
sulating the internal transition mechanism of the dynamic system. The transition
covariance Qt represents the uncertain influence of the external environment.

The filter integrates X
↓
t with Ot to have an estimate Xt ↗ N (µxt ,ϑxt) for

st. It is computed as follows:





µxt = µx↑
t
+Kt (µot ↓ µx↑

t
)

ϑxt = (1↓Kt)ϑx↑
t

Kt =
ωx↑

t
ωx↑

t
+R

(7)

where Kt is named Kalman gain.
For a later state st+1, the filter recursively derives a prediction using estimate

Xt of st. Only the estimate of the initial state should be specified manually since
no prior estimates are made. To implement the Kalman filter, specifications for
R, F , Qt, and an initial estimate X0 ↗ N (µx0 ,ϑx0) are required.

Since the forecast of the current state depends solely on the previous state,
it is necessary to reformulate the state to integrate the Kalman filter into the
adjustment framework. In KF-MA, for each class at time t, the forecast yt of
true prevalence pt is modeled as:

yt = f(p̂m
t) = a p̂m

t (8)

where the vector a = [a1, a2, · · · , am], p̂m
t = [p̂t→m, p̂t→m+1, · · · , p̂t→1]

↑. For
time t, define the state as a m ↘ 1 vector p↔

t = [pt→m+1, · · · , pt→1, pt]
↑, hence

we have the estimate Xt ↗ N (p̂↔
t , Pt), in which p̂↔

t = [p̂t→m+1, · · · , p̂t→1, p̂t]
↑,

Pt is the m ↘ m covariance matrix and p̂m
t = p̂↔

t→1. Correspondingly, we have
the forecast X

↓
t ↗ N (y↔

t , P
↓
t) and the observation Ot ↗ N (o↔

t , R). Therefore, we
set the m↘m transition matrix F as:
1 Independent and identically distributed.

Quantification Over Time 27

F =





0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
a1(m) a2(m) a3(m) · · · am(m)




(9)

s.t.

y↔
t = F p̂↔

t→1 (10)

Now Eq. (8) is transformed into Eq. (10). KF-MA uses MA for time series
forecasting f , hence aj(m) = 1

m for each in F . R is modeled by the mean
squared error r of the quantifier through validation multiplied by an m ↘ m

identity matrix Im as R = r · Im. Since no former state can be used to update
the initial state covariance, it is initiated by observations and R. Set the time
index starting from 1, the initial state p↔

t = [p1, · · · , pm→1, pm]↑. The initial
estimate is N (o↔

m, R). Similar to other time series forecast algorithms, we cannot
estimate the initial m class prevalence. Hence, the window size m is expected
to be set small, as detailed in Section 5. Assuming a stable outside influence
over time, we denote the transition covariance as Q, which is fine-tuned through
the validation process. Recalling the Eq. 7 and Eq. (4), we can now obtain the
estimate Xt ↗ N (p̂↔

t , Pt) by





p̂↔
t = Kt o↔

t + (1↓Kt)y↔
t

Pt = (1↓Kt)P ↓
t

Kt =
P ↑

t
P ↑

t+R

(11)

in which ε = Kt. For each class at time t, value p̂t = p̂↔
t [m] is the estimate of

its true prevalence. In comparing KF-MA with the moving average, one notable
advantage of KF-MA is its dynamic weights for observations and predictions.
This advantage stems from the recursive updating of the Kalman gain as the
states change over time.

5 Experimental Evaluation

This section outlines the experimental evaluation settings and discusses the re-
sults, focusing on how KF-MA improves quantification accuracy and whether it
outperforms MA. Additionally, we compare KF-MA to the state-of-the-art QoT
methods in the literature.

5.1 Experimental Setup

Implementing a QoT approach involves four main components: a classifier, a
quantifier, a time series forecaster and an adjustment framework. Most existing
quantifiers produce a class prevalence estimate using the scores generated by a

28 F. Li et al.

classifier. The time series forecaster and adjustment framework adjust the output
of the quantifier, improving its performance in the presence of historical data.
To e!ectively evaluate our method, we created a diverse experiment involving
multiple datasets, classifiers, and quantifiers. The objective is to introduce vari-
ations that enable a comprehensive comparison and simulate scenarios in which
users might apply the method across various applications.

Datasets The requirements for datasets include true or hand-coded labels,
timestamp features, and a task that involves counting a time-related topic or
entity. We selected seven datasets meeting the criteria, three of which are textual
data for sentiment classification:

NpSenti Sentiment analysis of COVID-19-related Tweets in Nepali [24].
AppleSenti User sentiments towards Apple company on Twitter2.
GlobalSenti A collection of worldwide Tweets related to COVID-193.

The rationale for choosing these datasets is they represent applications simi-
lar to those discussed in Section 3, specifically in monitoring opinions of partic-
ular topics. In addition to textual datasets, we collected four other datasets for
various applications:

Mosquito A mosquito surveillance dataset to count mosquitoes by species.
Bike An UCI dataset for bike sharing prediction4.
Energy An UCI dataset for predicting energy consumption5.
News An UCI dataset for predicting online news popularity6.

𝑆1 𝑆𝑇𝐷1 𝑆2 𝑆3
time

𝐷2 𝐷𝐼
Dataset

Initialization Phase Testing Phase

Training
set

Quantifier

KF-MA

Classifier

Initialization Phase is to build the
quantifier based on the classifier
and providing reference for hyper
parameter tuning in KF-MA.

Fig. 4. Deployment of quantification over time with KF-MA

2 https://data.world/crowdflower/apple-twitter-sentiment
3 https://www.kaggle.com/datasets/datatattle/covid-19-nlp-text-classification/data
4 https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
5 https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
6 https://archive.ics.uci.edu/dataset/332/online+news+popularity

https://data.world/crowdflower/apple-twitter-sentiment
https://www.kaggle.com/datasets/datatattle/covid-19-nlp-text-classification/data
https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
https://archive.ics.uci.edu/dataset/374/appliances+energy+prediction
https://archive.ics.uci.edu/dataset/332/online+news+popularity

Quantification Over Time 29

The datasets are preprocessed to align with our evaluation criteria. For each
dataset, instances are assigned to time intervals, such as hours or days, and then
grouped into subsamples based on these intervals.

An initialization process is necessary for training classifiers and quantifiers
when not using pre-trained ones or searching for KF-MA hyperparameters. This
phase uses the first subsamples, as illustrated in Fig. 4. This data serves two
purposes:

1. It is used to train classifiers and quantifiers when not using pre-trained mod-
els and evaluate their performance.

2. It estimates the random error matrix, R, for the Kalman Filter used in KF-
MA. Such a matrix estimation is obtained from the quantifier’s mean squared
error obtained in the initialization data.

The number of samples in the initialization phase, I, must follow the re-
quirements found in practical applications. Large values of I allow us to train
better classifiers and quantifiers and estimate hyperparameters better. However,
large training sets are unavailable for many applications due to the high cost
of labelling data. In our experiments, we used around 15% of the data for ini-
tialization of the non-textual datasets. We used the first 15 time units for the
textual datasets, such as hours or days. After setting I, T samples remain for
testing. The final models are trained in the concatenation of all {Di}Ii=1 as a
single training set. Table 1 summarises the parameters of our experimental setup
for each dataset.

Table 1. Summary of the experimental setup. #Classes is the number of classes. Tr.
Size is the number of instances in the training set after concatenation. I is the number
of time units in the training set. Avg. Size/t is the average number of instances per
sample in the testing sets. T is the number of time units in the training set.

Dataset #Classes Tr. Size I Avg. Size/t T Time Unit

NpSenti 3 233 15 104 320 day
AppleSenti 3 1927 15 104 18 day
GlobalSenti 3 4454 15 1397 29 day
Mosquito 2 958 24 334 312 hour
Bike 2 2634 55 47 273 hour
Energy 3 2880 20 144 103 day
News 2 6943 36 155 185 day

Classifiers and quantifiers We chose to use two pre-trained sentiment clas-
sifiers on the three textual datasets: VADER [11] a lexicon-based sentiment an-
alyzer, and AutoNLP from HuggingFace7, referred as Solanki. We used Logistic
7 https://huggingface.co/amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061

https://huggingface.co/amansolanki/autonlp-Tweet-Sentiment-Extraction-20114061

30 F. Li et al.

Regression and Random Forest classifiers for the other four datasets with default
hyperparameters.

For the quantifiers, we selected Adjusted Classify and Count (ACC) [9], Dis-

tribution y-Similarity (DyS) [17], Generalized Probabilistic ACC (GPACC) [7],
and Energy Distance-y (EDy) [5]. These are popular quantifiers often ranked
among the best performing according to recent empirical studies [22].

ACC adjusts the output of CC using the true positive (tpr) and false pos-

itive rates (fpr) through a validation process on the training set. DyS models
the scores provided by a classifier using histograms. The model searches for a
parameter that minimizes the distance between a mixture of positive and nega-
tive scores from the training set and the unlabelled scores from the test sample.
GPACC is a generalization of ACC for multiclass problems with probabilistic
classifiers. It uses a soft variation of the confusion matrix obtained from the
training set using cross-validation. EDy interprets the dimensional density of
the data as the posterior distribution. This approach allows EDy to extract
more detailed information than GPACC in feature space.

CC, GPACC, and EDy are naturally capable of quantification on multi-class
data, while ACC and DyS are designed for binary data. Therefore, ACC and
DyS are deployed using One versus All (OVA) for multi-class datasets.

Hyperparameters One hyperparameter is the window size m for the time
series forecasting model f . In our experiments, we set m = 4, taking into account
the following factors:

(i) Larger window sizes are wasteful because the recommended model f does
not capture the seasonality patterns; (ii) Covariance decreases as time points
move further apart; and, (iii) Minimizing the number of data points that can
not be adjusted in the initial phase.

In addition to m, the transition matrix Q in the Kalman filter is tuned during
the initialization phase in Fig. 4. Matrix Q is assumed to be a scalar matrix,
similar to the observation covariance R. In our experiments, we perform a ternary
search on Q within the interval

[
10→4

, 10→1
]
.

Evaluation Our evaluation uses the Absolute Error (AE) due its interpretabil-
ity [23]:

AE(p↓ p̂) =
1

L

L∑

i=1

|p(i)↓ p̂(i)| (12)

where p is the true and p̂ the predicted class prevalence. We compute each
sample’s AE and take the mean across all samples, denoted as Mean Absolute

Error (MAE).
With seven datasets, four quantification methods, and two classifiers for each

dataset, we create 56 experimental conditions. Each condition undergoes ten
iterations with di!erent seeds, and the results are averaged to ensure the stability
and reliability of the findings.

Quantification Over Time 31

Table 2. MAE results on textual data for di!erent combinations of datasets, classifiers
and quantifiers.

Quantifier DyS ACC GPACC EDy

Classifier VADER Solanki VADER Solanki VADER Solanki VADER Solanki
Dataset GlobalSenti
QFY 0.0182 0.0590 0.0095 0.0640 0.0310 0.0730 0.0236 0.0620
MA 0.0300 0.0465 0.0280 0.0489 0.0359 0.0637 0.0325 0.0530

KF-MA 0.0156 0.0498 0.0087 0.0483 0.0280 0.0609 0.0208 0.0502

Best Method KF-MA MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA
Dataset NpSenti
QFY 0.1858 0.1712 0.1823 0.1828 0.2075 0.2529 0.1921 0.2575
MA 0.1350 0.1617 0.1505 0.1546 0.1672 0.2434 0.1549 0.2486

KF-MA 0.1354 0.1644 0.1473 0.1609 0.1640 0.2442 0.1527 0.2499

Best Method MA MA KF-MA MA KF-MA MA KF-MA MA
Dataset AppleSenti
QFY 0.1706 0.1289 0.1968 0.1187 0.1518 0.1134 0.1538 0.1146
MA 0.1215 0.0999 0.1688 0.0999 0.1334 0.1018 0.1340 0.1032

KF-MA 0.1128 0.0929 0.1670 0.0935 0.1254 0.0975 0.1269 0.0986

Best Method KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA

5.2 Comparison with QoT approaches in literature

We compare KF-MA to other approaches previously used in related work. From
our knowledge, only three methods have been used for QoT: standalone CC,
CC with moving average, and standalone ReadMe [10]. ReadMe is a quantifica-
tion method specifically designed for textual data. It does not require a trained
classifier as it operates directly on text features. Jerzak et al. [12] recently pro-
posed an improved version of ReadMe, referred to as ReadMe2, which has shown
competitive performance in sentiment quantification tasks. We assess ReadMe2
combined with our proposed method KF-MA, comparing it with CC, CC with
moving average, and standalone Readme2 on the three textual datasets. Other
datasets are not included in this experiment as they do not have the textual data
expected by ReadMe2. Solanki classifier was used in the CC approach. This ex-
periment evaluates if KF-MA improves upon the state-of-the-art approaches.

5.3 Results

We evaluate three QoT methods across 56 experimental conditions: standalone
quantification (QFY), quantification with moving average (MA), and quantifi-
cation with KF-MA (KF-MA). According to the results presented in Table 2
for textual data and Table 3 for numeral data, our proposed method KF-MA
achieved the best performance in most conditions.

32 F. Li et al.

Table 3. MAE results on non-textual datasets for di!erent combinations of datasets,
classifiers and quantifiers. LR represents Logistic Regression classifier and RF repre-
sents Random Forest classifier.

Quantifier DyS ACC GPACC EDy

Classifier LR RF LR RF LR RF LR RF
Dataset Bike
QFY 0.2113 0.2622 0.1780 0.2443 0.1982 0.2648 0.1827 0.2604
MA 0.1916 0.2054 0.1671 0.1886 0.1858 0.2164 0.1726 0.2111

KF-MA 0.1918 0.1971 0.1667 0.1840 0.1885 0.2112 0.1725 0.2049

Best Method MA KF-MA KF-MA KF-MA MA KF-MA KF-MA KF-MA
Dataset Energy
QFY 0.2813 0.2575 0.3294 0.3179 0.3442 0.4378 0.3281 0.4305
MA 0.2285 0.2259 0.3136 0.2531 0.2867 0.3906 0.2769 0.3788

KF-MA 0.2089 0.1858 0.3041 0.1862 0.2611 0.3533 0.2514 0.3297

Best Method KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA
Dataset News
QFY 0.2143 0.2282 0.3253 0.2248 0.2243 0.1981 0.2175 0.2039
MA 0.1694 0.1951 0.2208 0.2177 0.1803 0.1732 0.1735 0.1779

KF-MA 0.1518 0.1772 0.0959 0.2162 0.1597 0.1638 0.1534 0.1680

Best Method KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA
Dataset Mosquito
QFY 0.0399 0.0191 0.0468 0.0223 0.0403 0.0182 0.0404 0.0187
MA 0.0445 0.0411 0.0459 0.0420 0.0440 0.0404 0.0440 0.0406

KF-MA 0.0327 0.0190 0.0348 0.0219 0.0315 0.0178 0.0316 0.0184

Best Method KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA KF-MA

MA won 8 out of 56, while QFY did not win any. Standalone quantification
methods exhibit varying performances across the seven datasets. However, the
MAE results demonstrate that KF-MA consistently improves the quantification
accuracy of the standalone quantifiers.

Although not as e!ective as KF-MA, the moving average can improve the
quantification accuracy over the standalone quantifiers in certain cases. However,
for datasets such as GlobalSenti and Mosquito, in which standalone quantifiers
underperform, applying a moving average tends to worsen the estimation due
to its nature as a low-pass filter. In contrast, KF-MA provides adaptive filtering
capabilities, which are particularly beneficial when observations are unbiased.

Table 4 shows that KF-MA improves the performance of the state-of-the-
art approach ReadMe2. The quantification results of ReadMe2 with KF-MA
on the three textual datasets show a consistent improvement over all methods
previously applied in the literature.

Quantification Over Time 33

Table 4. MAE results of di!erent QoT methods on three textual datasets.

QoT Method CC CC+MA ReadMe2 ReadMe2+KF-MA

NpSenti 0.2436 0.2465 0.1422 0.1420
GlobalSenti 0.2439 0.2264 0.0766 0.0594
AppleSenti 0.2000 0.1631 0.1182 0.1148

Mean 0.2292 0.2120 0.1123 0.1054

6 Conclusion

In this paper, we introduced the task of quantification over time (QoT), which
is common in various fields, and proposed a method called the Kalman Filter-
Moving Average (KF-MA) approach. Additionally, we propose a framework that
accommodates both KF-MA and MA approaches. MA is a popular approach in
the literature for adjusting the output of standalone quantifiers in QoT.

We evaluated our method through experiments under various combinations
of datasets, quantifiers and classifiers, comparing them with state-of-the-art ap-
proaches. The results demonstrate that using time dependency enhances the
performance of quantifiers in QoT problems. Our work provides practitioners
with an accurate tool and o!ers fundamental guidelines and ideas to researchers
interested in developing novel algorithms targeted at quantification over time.

In future work, we intend to develop and integrate more sophisticated ap-
proaches for time series forecasting that can learn from small quantities of data.
One potential approach is the use of Gaussian Processes. We also intend to
use multidimensional time series forecasters, using the dependencies among the
class’s prevalence to improve our results.

References

1. Belcastro, L., Branda, F., Cantini, R., Marozzo, F., Talia, D., Trunfio, P.: Analyzing
voter behavior on social media during the 2020 us presidential election campaign.
Social Network Analysis and Mining 12(1), 83 (2022)

2. Bollen, J., Mao, H., Zeng, X.: Twitter mood predicts the stock market. Journal of
computational science 2(1), 1–8 (2011)

3. Borge-Holthoefer, J., Magdy, W., Darwish, K., Weber, I.: Content and network
dynamics behind Egyptian political polarization on Twitter. In: Proceedings of
the 18th ACM Conference on Computer Supported Cooperative Work & Social
Computing. pp. 700–711 (2015)

4. Ceron, A., Curini, L., Iacus, S.M., Porro, G.: Every tweet counts? How sentiment
analysis of social media can improve our knowledge of citizens’ political preferences
with an application to Italy and France. New media & society 16(2), 340–358
(2014)

5. del Coz, J.J.: Unioviedo (team2) at Lequa 2022: comparison of traditional quanti-
fiers and a new method based on energy distance. In: Working Notes of the 2022
Conference and Labs of the Evaluation Forum (CLEF 2022), Bologna, IT (2022)

34 F. Li et al.

6. De Nadai, B., Maletzke, A., Corbi, J., Batista, G., Reiskind, M.: The impact
of body size on Aedes [stegomyia] aegypti wingbeat frequency: implications for
mosquito identification. Medical and Veterinary Entomology 35(4), 617–624 (2021)

7. Firat, A.: Unified framework for quantification. arXiv preprint arXiv:1606.00868
(2016)

8. Forman, G.: Counting positives accurately despite inaccurate classification. In:
European conference on machine learning. pp. 564–575. Springer (2005)

9. Forman, G.: Quantifying counts and costs via classification. Data Mining and
Knowledge Discovery 17, 164–206 (2008)

10. Hopkins, D.J., King, G.: A method of automated nonparametric content analysis
for social science. American Journal of Political Science 54(1), 229–247 (2010)

11. Hutto, C., Gilbert, E.: Vader: A parsimonious rule-based model for sentiment anal-
ysis of social media text. In: Proceedings of the international AAAI conference on
web and social media. vol. 8, pp. 216–225 (2014)

12. Jerzak, C.T., King, G., Strezhnev, A.: An improved method of automated nonpara-
metric content analysis for social science. Political Analysis 31(1), 42–58 (2023)

13. Kalman, R.E.: A new approach to linear filtering and prediction problems (1960)
14. Lai, P.: Extracting strong sentiment trends from Twitter. https://nlp.stanford.edu/

courses/cs224n/2011/reports/patlai.pdf (2010)
15. Lamsal, R.: Design and analysis of a large-scale COVID-19 tweets dataset. applied

intelligence 51, 2790–2804 (2021)
16. Liu, R., Yao, X., Guo, C., Wei, X.: Can we forecast presidential election using Twit-

ter data? an integrative modelling approach. Annals of GIS 27(1), 43–56 (2021)
17. Maletzke, A., dos Reis, D., Cherman, E., Batista, G.: DyS: A framework for mixture

models in quantification. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33, pp. 4552–4560 (2019)

18. Moreo, A., Sebastiani, F.: Tweet sentiment quantification: An experimental re-
evaluation. Plos one 17(9), e0263449 (2022)

19. O’Connor, B., Balasubramanyan, R., Routledge, B., Smith, N.: From tweets to
polls: Linking text sentiment to public opinion time series. In: Proceedings of the
international AAAI conference on web and social media. vol. 4, pp. 122–129 (2010)

20. Parmezan, A.R., Souza, V.M., Seth, A., "liobaitė, I., Batista, G.E.: Hierarchical
classification of pollinating flying insects under changing environments. Ecological
Informatics 70, 101751 (2022)

21. Rani, S., Kumar, P.: A sentiment analysis system to improve teaching and learning.
Computer 50(5), 36–43 (2017)

22. Schumacher, T., Strohmaier, M., Lemmerich, F.: A comparative evaluation of quan-
tification methods. arXiv preprint arXiv:2103.03223 (2021)

23. Sebastiani, F.: Evaluation measures for quantification: An axiomatic approach.
Information Retrieval Journal 23(3), 255–288 (2020)

24. Sitaula, C., Basnet, A., Mainali, A., Shahi, T.B., et al.: Deep learning-based meth-
ods for sentiment analysis on Nepali COVID-19-related tweets. Computational
Intelligence and Neuroscience 2021 (2021)

25. Wen, M., Yang, D., Rose, C.: Sentiment analysis in MOOC discussion forums:
What does it tell us? In: Educational data mining 2014. Citeseer (2014)

26. Yaqub, U., Chun, S.A., Atluri, V., Vaidya, J.: Analysis of political discourse on
Twitter in the context of the 2016 us presidential elections. Government Informa-
tion Quarterly 34(4), 613–626 (2017)

https://nlp.stanford.edu/courses/cs224n/2011/reports/patlai.pdf
https://nlp.stanford.edu/courses/cs224n/2011/reports/patlai.pdf

Enhancing Quantification through Meta-Learning

Guilherme B. Gomes1, Willian Zalewski2, and André G. Maletzke1

1 Western Paraná State University, Foz do Iguaçu, Paraná, BR
{guilherme.gomes,andre.maletzke}@unioeste.br

2 Federal University for Latin American Integration, Foz do Iguaçu, Paraná, BR
willian.zalewski@unila.edu.br

Abstract. We advocate that no single quantifier consistently outper-
forms all others across every possible scenario. We also argue that ex-
perimental evaluation in quantification using the Artificial-Prevalence
Protocol is significantly more costly than in classification. Although the
community has made strides in reducing the number of algorithms to
be tested in classification scenarios, this challenge in quantification re-
mains unexplored. To address this issue, we introduce a method that
recommends quantifiers for each dataset, leveraging the concept of meta-
learning. By analyzing the intrinsic characteristics of datasets through
meta-features, our method predicts the most suitable quantification al-
gorithm likely to yield optimal results. Our proposal automates the selec-
tion process, providing data-driven recommendations that enhance the
e!ciency and e"ectiveness of quantification tasks. We achieved a rec-
ommendation accuracy of 83%, meaning that our system successfully
identified the optimal quantifier for 83 out of 100 datasets. Furthermore,
our architecture enables us to build an ensemble of quantifiers using,
for instance, the recommended Top-k quantifiers. Our ensembles lead to
superior quantification results compared to other state-of-the-art quan-
tifiers, such as DyS, SORD, and MS.

Keywords: Meta-Features · Recommendation · Learning to quantify

1 Introduction

Meta-learning (MtL)-based recommendation systems can be a viable solution
to automatically select data-driven algorithms using knowledge extracted from
previous tasks [25]. Meta-learning systems indicate which algorithm should be
utilized to achieve the best possible results for each task, according to its par-
ticularities [6]. However, for recommendations to be made, this system needs
to acquire experience, for example, from (i) model evaluations, which involve
recommending hyperparameter values, configuration search spaces, and opti-
mization approaches for analogous tasks; (ii) previously successful models using
transfer learning; and (iii) exploring task properties to recommend algorithms
based on data characterization and learning performance [25].

Exploring meta-learning for building recommendation systems has been in-
vestigated over the years. For example, Ali & Smith [4] used accuracy and com-
plexity measures to build a classifier recommendation system. In [1], the authors

36 G. B. Gomes et. al

also used meta-learning to recommend image segmentation algorithms, and in
[24], meta-learning was used to recommend clustering algorithms. Meta-learning
as a tool for selecting machine learning algorithms has shown great promise in
various machine learning tasks [21,12,23].

Recently, a novel supervised task known as quantification has garnered signif-
icant interest from the machine learning community. The task aims to accurately
determine the prevalence of each class within an unlabeled dataset. A key dis-
tinction between quantification and classification is that the class distribution
in quantification is not fixed. Otherwise, it could easily predict the class propor-
tions in the test set based on the training set. Several quantification algorithms
have been proposed in the last decade. However, compared to the classification
task, quantification has a significantly smaller number of methods. In contrast,
quantification experiments are more expensive than classification, requiring sev-
eral test sets with di!erent class distributions. Consequently, determining the
most suitable method for a new problem can be expensive and time consuming.
Previous studies have dedicated e!orts to evaluate the performance of several
quantifiers under di!erent conditions [20,16,27,14]

We advocate that no single quantifier consistently outperforms all others
across every possible scenario. This variability in performance requires a tailored
approach to selecting the most appropriate quantifier for each dataset. We also
argue that experimental evaluation in quantification is massively more costly
than classification. Although the community has delivered proposals to reduce
the number of algorithms to be experimented within classification scenarios, this
challenge in quantification remains unexplored.

Investigating a meta-learning strategy to develop recommendation systems
for quantification algorithms is still uncharted territory. To address this chal-
lenge, we suggest quantifiers for each dataset using meta-learning principles.
By examining the inherent properties of datasets through meta-features, our
method forecasts the most appropriate quantification algorithm expected to de-
liver optimal outcomes. This approach automates the selection procedure, o!er-
ing data-driven recommendations that improve the e"ciency and e!ectiveness
of quantification activities.

The structure of this article is as follows: Section 2 describes the basic con-
cepts and di!erences between the classification and quantification tasks as well
as the algorithm recommendation task formalization, including meta-learning
concepts. Section 3 reviews the literature on related works. Sections 4 and 5
present our meta-learning architecture for recommending quantifiers and the
experimental setup of this paper, respectively. Section 6 presents the empiri-
cal results and discussion. Finally, Section 7 concludes this work and present
directions for future work.

2 Background

In machine learning, classification assigns one or more classes to a set of in-
dividual data items. To achieve this, a learner h is used to generalize a hy-

Enhancing Quantification through Meta-Learning 37

pothesis from a training set T = {(x1, y1), . . . , (xn, yn)} of length n, in which
xi → X = {ai1, . . . , aim} represents a vector with m attributes in the feature
space X and yi → Y = {c1, . . . , cw} represents a label in the w-label space Y.
The hypothesis aims to cover the available training examples and future unseen
examples. In this paper, we focus on binary problems, i.e., the label space Y
is restricted to Y = {↑,↓}. Therefore, a classifier is a function that maps an
instance of X to a subset of Y as follows h : X ↔ {↑,↓}.

Many classification algorithms generate scores as an intermediate step in
deciding which class is assigned to an instance [9]. In binary classification, it
su"ces to consider the score for only one of the classes, such as the score for the
positive class. A scorer s(xi) is a function that maps each instance xi to a value
correlating to P(yi = ↑|xi) as the following equation s : xi ↔ R [17]. Therefore,
a classifier is subsequently achieved by applying a threshold to the score values,
categorizing them as positive or negative.

Over the years, algorithms to build data-driven models have been proposed,
resulting in a large number of options. For instance, both h and s are models
induced by some machine learning algorithm based on a dataset. Selecting the
most appropriate method to fit h and s for a dataset can be laborious. This
fact has inaugurated a new research field that aims to recommend algorithms
based on data features. One approach is to develop an automated system for
recommending algorithms, which relies on the relationship between algorithm
performance and dataset characteristics to suggest suitable algorithms directly.

Let S = {S1,S2, . . . ,SM} represents a set of M datasets across various do-
mains and A = {A1,A2, . . . ,AN } a set of N candidate algorithms for proper
induction of h and s along with a model quality measure ω. An algorithm rec-
ommendation for a given Sd can be defined as follows:

Recommender(Sd) = arg max
Ar→A

ω(Sd,Ar)

where arg maxAr→A selects the algorithm Ar that maximizes the quality mea-
sure ω for the dataset Sd.

The selection of quality measures is intrinsically related to the specific nature
of the problem and the task at hand. For instance, accuracy is typically employed
as a quality metric in classification tasks, while Mean Absolute Error (MAE) is
conventionally utilized in regression tasks.

2.1 Quantification

Classification aims at assigning one or more classes to each instance from a
distribution. Nevertheless, in many cases, the primary objective is to estimate
the proportion of each class in the test set rather than to label individual data
points. In such applications, predictions of samples matter more than individual
instances. This distinction highlights the di!erence between classification and
quantification.

A quantifier is a predictive model q induced from a dataset to predict the
class distribution of an unlabeled set, defined according to the following equation:

38 G. B. Gomes et. al

q : 2
X ↔ [0, 1]

where, 2X represents the power set of X and q outputs a single number in the
interval [0, 1] that correlates to the positive class prevalence.

An important distinction between quantification and classification lies in the
non-stationarity of class distributions found in quantification problems. Other-
wise, it would be trivial to predict the class proportions in the test set based
on the distribution in the training set. Consequently, the most straightforward
quantifier, called Classify and Count (CC), which involves classifying each in-
stance and then counting how many of them belong to each class does not match
in this context, su!ering from the systemic error introduced when the class dis-
tribution varies. Numerous techniques have been suggested by the quantification
community to address this issue. One of the first is the Adjusted Classify and
Count (ACC), which corrects the bias in CC by adopting a correction factor
based on the model’s true positive rate (tpr) and false positive rate (fpr).

ACC provides perfect quantification results regardless of the classifier accu-
racy when precises tpr and fpr are provided. However, data scarcity and class
imbalance make estimating these statistics challenging. The symbiosis between
classification and quantification extends far beyond CC and ACC. The quan-
tification community has proposed numerous methods, most of which rely on
binary classifiers that produce a score representing the confidence in a positive
classification as an intermediate step for quantification. González et al. (2017)
[13] provide a comprehensive survey of quantification methods, structuring them
into a taxonomy of three groups:
i. Classify, Count, and Correct: methods that classify each instance and sub-

sequently count the examples that belong to each class. This group also
includes methods that apply a correction factor to these counts, including
techniques that account for classification error;

ii. Adaptation of classification algorithms: approaches that modify the mechan-
ics of classification algorithms to transform them into quantifiers;

iii. Distribution matching: methods that model the training data distribution,
typically represented by P (x|y), varying P (y), and then seek parameters
that best match the test data distributions.

Table 1 briefly presents some of the most known and utilized quantifiers in
the literature. The last column provides the corresponding reference for each
method. All methods, except those in the group ii, require a preliminary step of
learning a classifier capable of predicting a score for each unlabeled test instance.
A score is a numerical value that correlates with the posterior probability of
a particular class, i.e., P (↑|x) for binary problems. Various machine learning
algorithms can be used to obtain a scorer, removing the decision threshold step.
However, selecting the best scorer does not guarantee the best quantifier, as the
premise Ptraining(y) = Ptest(y) cannot be held in quantification scenarios.

Selecting the best quantifier is highly dependent on the specific character-
istics of each dataset, requiring performing extensive experiments using, for in-
stance, the Artificial-Prevalence Protocol (APP) [10]. APP is the most commonly

Enhancing Quantification through Meta-Learning 39

Table 1: Quantifiers evaluated.
Taxonomy Quantifier Acronym ReferenceGroup

i

Classify and Count CC [10]Adjust Classify and Count ACC
Probabilistic Classify PCC [5]Probabilistic Adjust Classify and Count PACC
Threshold Selection Method

[11]

Set the decision threshold where (1 ↑ tpr) = fpr X
Set the decision threshold where tpr↑ fpr MAXis maximized
Estimate tpr and fpr for several thresholds, MSreturning the median of them

ii Quantification Trees QT [22]

iii

Expectation Maximization Quantification EMQ [26]
Distribution matching with Hellinger Distance HDy [15]
Mixture Model Framework DyS [19]
Sample Mean Matching SMM [16]
Sample-ORD Method SORD [19]

employed experimental framework for evaluating and contrasting quantification
techniques. For binary problems, APP generates several test sets, sub-sampling
examples randomly from ↑ or ↓ with predetermined class distributions. Com-
monly, test sets are generated varying the class distribution across a wide range
of possibilities, such as p = P (↑) → {0, .01, .02, . . . , .99, 1}. APP entails a proba-
bilistic decision, making it susceptible to random variability. Consequently, many
researchers opt to replicate this experiment to minimize variance. This procedure
leads to an assessment over a large number of test sets [17].

Meta-learning emerges as a valuable tool, leveraging prior knowledge and
experience from multiple learning tasks to guide quantifier selection. By ana-
lyzing the properties of datasets and their interactions with various quantifiers,
meta-learning can identify patterns and correlations that are not immediately
apparent. This enables the development of recommendation systems that pre-
dict the most suitable quantifiers or a group of quantifiers for a given dataset.
According to Garcia et al. (2018) [12], meta-learning can help di!erentiate the
performance of a set of machine learning methods, aiding in the selection of the
best method for a given problem.

2.2 Meta-learning

Meta-learning aims to automate selecting, tuning, and combining machine learn-
ing algorithms to improve overall performance across a wide range of tasks [3].
To achieve this, past experiences are utilized to learn from the learning process
itself, a concept known as learning to learn.

Meta-learning-based recommendation systems feature automatic technique
selection driven by data, utilizing knowledge extracted from previous tasks [6].
According to Rivolli et al. (2022) [25], MtL incorporates the following compo-
nents: the problem space (S), the feature space (F), the machine learning algo-
rithm space (A), the performance space (E), and the machine learning algorithm
used for MtL. Therefore, through a data-driven process, the performance (E) of

40 G. B. Gomes et. al

a set of algorithms (A) on various datasets (S) is associated with characteristics
of these datasets (F), represented by meta-features. Thus, a machine learning
model is induced from the meta-data, represented by F , recommending the most
suitable machine learning algorithm from A for a new dataset.

Meta-features must be tailored to the problem at hand, being able to charac-
terize the problem aiming to induce an e!ective recommendation model. Existing
an assorted strategies for constructing meta-features. Rivolli et al. (2022) [25]
propose organizing these strategies into six groups as follows:

– Simple: measures that are easily determined and generally do not require
high computational e!ort. Commonly referred to as general metrics, includ-
ing the number of dataset instances and the number of attributes.

– Statistical: these measures capture statistical properties from a dataset,
such as mean, standard deviation, correlation, skewness, and kurtosis.

– Information Theory: these measures explore information theory concepts
to describe a dataset. These metrics rely on entropy, quantifying the infor-
mation content and complexity within the data.

– Model-Based: these measures are extracted from a fitted model learned
on the training data. Although these measures can be extracted from dif-
ferent sorts of models, typically, they are derived from decision tree models,
including the count of leaves, nodes, and the structure of the decision tree.

– Landmarking: these measures are based on the performance of fast and
simple learning systems and algorithms to characterize a dataset. These al-
gorithms should exhibit di!erent inductive biases and be able to capture
relevant information at a low computational cost.

– Others: represent measures that do not fit into any of the previous groups,
generally including domain-related concepts and time-related measures.

Constructing a recommender system with meta-features involves multiple
stages. Firstly, meta-features are selected and extracted from a diverse set of
datasets, creating a meta-dataset where each instance represents a dataset. After
that, a performance metric for each recommendable algorithm is estimated and
included in the meta-table. A meta-learner is then trained on this meta-dataset
to predict the performance of di!erent algorithms based on the meta-features.
Finally, when a new dataset arrives, the meta-features are extracted and input
into the trained meta-learner, predicting the best-performing algorithm.

3 Related Works

Meta-learning has been e!ectively used to develop recommender systems across
various domains. Wang et al. [30] and Zhang et al. (2019) [31] created systems
that recommend feature selection and imbalance learning methods, respectively,
by associating dataset meta-features with algorithm performance in a meta-
table. Similarly, das Dôres et al. (2016) [8] proposed a framework for recommend-
ing software fault prediction algorithms, while Garcia et al. (2018) [12] focused
on recommending classifiers by predicting their accuracy using data complexity

Enhancing Quantification through Meta-Learning 41

measures. Zhu et al. (2018) [32] introduced a novel approach by applying link
prediction in a network of datasets and classifiers to recommend appropriate
classifiers. These studies demonstrate the broad applicability of meta-learning
in building recommendation systems, with various frameworks proposed for dif-
ferent tasks [24,1,4].

In the last decade, quantification methods have been proposed to address var-
ious challenges in machine learning tasks. This rapid development has led to a
diverse landscape of techniques, each with unique strengths and weaknesses tai-
lored to specific types of data and problem scenarios. While this variety enriches
the field, it also introduces a significant challenge: selecting the most suitable
quantification method for a given problem has become increasingly complex.

To address this challenge, we propose a novel framework for recommend-
ing quantifiers based on meta-features. To the best of our knowledge, the task
of recommending quantifiers has not been explored previously. Our approach
leverages the wealth of existing quantification methods and automates the selec-
tion process by using meta-features to characterize datasets. These meta-features
capture essential properties of the data, enabling the system to predict which
quantifiers are likely to perform best.

4 Architecture for Recommending Quantifiers

In this section, we introduce a novel method that recommends quantifiers for each
dataset by leveraging the concept of meta-learning. By analyzing the intrinsic
characteristics of datasets through meta-features, our approach predicts the most
suitable quantification algorithm likely to yield optimal results. This proposal
automates the selection process, providing data-driven recommendations that
enhance the e"ciency and e!ectiveness of quantification tasks.

Initially, we extract meta-features from various datasets to capture their char-
acteristics. Then, we estimate the performance of several quantifiers on these
datasets using APP. After that, the extracted meta-features and performance
metrics are unified to build the meta-table that serves, in the next step, to fit a
recommender model. Finally, when a new and unseen dataset arrives, we extract
its meta-features, providing them to the recommender that predicts the most
appropriate quantifier. Figure 1 shows the architecture of our proposal.

Inspired by the literature on meta-learning recommendation, our proposal
involves the following steps: (1) meta-features extraction, (2) meta-target esti-
mation, (3) meta-learner induction, and (4) quantifier recommendation.

Step 1 - Meta-features extraction: for each dataset, meta-features are de-
rived, resulting in a meta-instance within the meta-table. These meta-features
encapsulate diverse attributes of the datasets, including statistical proper-
ties, information-theoretic metrics, and model-based characteristics. Conse-
quently, each meta-instance in the meta-table o!ers a thorough summary of
a dataset’s principal features, aiding the recommender system in determin-
ing the most appropriate quantification algorithms for new datasets based

42 G. B. Gomes et. al

Training
Datasets

Candidate
Quantifiers
!1,	...,	AN

Meta-features
extraction from

each dataset

Performance
evaluation of each

quantifier using APP

Meta-learner

Meta-Table

Meta-features
Extraction

Quantifier
Recommendation

Recommended
Algorithm

Test
Dataset

Meta-learner construction using meta-features and APP for meta-target estimation

Quantifier recomendation for a new Dataset

MF1 ... MFn MAE

MF1 ... MFn MAE

...!1
!N

Fig. 1: Architecture for quantifiers recommendation.

on their meta-features. Figure 2 shows the intuition of the meta-feature ex-
traction process.

MF1 ... MFn

...

Set of M datasets

S1
S2

SM

Meta-Features
Extraction

S1
S2

SM

...

Meta-Table

m
et
a-
in
st
an

ce
s

Fig. 2: Meta-features extraction process.

Both quantification and classification are supervised tasks that can explore
diverse types of meta-features, i.e., supervised and nonsupervised meta-
features. In our architecture, we use the following groups of meta-features:
simple, statistical, information-theoretic, model-based, and landmarking.
The number of meta-features extracted varies across datasets. To standardize
the meta-dataset, since instances cannot have di!erent numbers of attributes,
the features values are aggregated by the mean value for each feature, ensur-
ing all feature sets have the same number of elements. Additionally, the range
of the meta-features can vary significantly between datasets. To address this,
the resulting meta-table can be normalized via min-max scaling.

Step 2 - Meta-target estimation: to build a recommendation model, the tar-
get attribute (or class) must be added to the meta-table, indicating, for ex-
ample, which algorithm is most suitable for each dataset. For classification
problems, the meta-target represents the performance of the classification

Enhancing Quantification through Meta-Learning 43

algorithm such as accuracy or F-score [25]. In the context of quantification,
classification metrics are unsuitable. In contrast, in quantification, the per-
formance is based on the ability of minimizing the di!erence between true
(P (ci)) and predicted (P̂ (ci)) class distribution for a set of classes Y. Various
measures for quantifier evaluation have been adapted from other contexts,
such as Mean Absolute Error and Kullback-Leibler Divergence [28]. We use
MAE as the meta-target in our architecture. Figure 3 illustrates the process
of meta-target estimation.

Meta-Table

Samples randomly
extracted from the
test set varying class
distribution

Artificial-prevalence protocol (APP)

Quantification
algorithms
A1,	…,	AN

...

Training
set

...

Set of M datasets

S1

S2

SM

Error
Test
set

Meta-Target

MF1 ... MFn Target

...

...

... ...

...A1

AN

Each
dataset is
processed
via the
APP

MF1 ... MFn Target

...

Fig. 3: Meta-target estimation using Artificial-Prevalence Protocol.

Evaluating a quantifier requires providing a sample of instances and varying
the class distribution instead of a set of instances, as in the classification
setup. We use the Artificial-Prevalence Procotol, which splits the dataset
into training and test sets and then extracts several batches varying the
class distribution from the test partition.

Step 3 - Meta-learner induction: from the meta-tables built in the previous
step, we learn several regressors, one for each meta-table. These regressors
serve as recommenders for an unknown dataset. Figure 4 illustrates the pro-
cedure that leads to the creation of a collection of meta-learners (regressors).

Meta-Table

Machine learning
algorithm

MLA1

MLA2

MLAN

MF1 ... MFn Target

...

...

... ...

...A1

AN

MF1 ... MFn Target

...

...

Meta-Learner Induction

In the previous
step, a meta-
table for each
quantifier was
learned.
Consequently, in
this step, each
meta-table will
generate a meta-
learner

Fig. 4: Meta-learner induction step.

Step 4 - Quantifier recommendation: once the meta-learners are trained,
the system can recommend suitable quantification algorithms for new datasets.

44 G. B. Gomes et. al

When a new dataset is presented, its meta-features are extracted and used
as input to the trained meta-learners. Each meta-learner provides a predic-
tion of the expected performance (in terms of MAE) for its corresponding
quantifier. Figure 5 shows the recommendation process using meta-learners
to predict the best quantifier for a new dataset. In order to enhance the

MLA1

MLA2

MLAN

...

Set of
Meta-learners

New dataset

MF1 ... MFnMeta-Features
Extraction

Target

0.023

0.015

0.043

The simplest
recommender
scheme consists
of recommending
the meta-learner
that predicts the
lowest value. In
this case the
algorithm A2

Fig. 5: Recommendation process based on a set of meta-learners.

recommendation’s robustness, we propose forming an ensemble of quanti-
fiers by selecting the Top-k recommended methods. The ensemble can be
constructed using various strategies, such as averaging the predictions of the
selected quantifiers or assigning weights to each quantifier based on their pre-
dicted errors3, where the quantifier with the lowest error receives the highest
weight. In our proposal, the following strategies are explored:
– Top-1: the recommender selects the best quantifier for a new dataset,

choosing the method that produces the lower error. This quantifier is
then employed to perform the quantification task, leveraging its suit-
ability as determined by the meta-features of the dataset.

– Top-k: we adopt an ensemble strategy to select the k methods whose
predicted errors were the lowest. Next, we merge the Top-k methods
using the median of their predictions, with the goal of leveraging the
advantages of various quantifiers.

– Top-k+W: we further refine the ensemble approach by weighting each
of the k selected quantifiers based on their errors. Quantifiers with the
lowest errors predicted are given higher weights. Let qi represents the i-
th quantifier, and ei the predicted error by the recommender. The weight
wi for each quantifier is inversely proportional to its error. The weights
wi are calculated as follows: wi =

1/ei∑k
j=1(1/ej)

The weighted ensemble
quantifier is expressed as:

Top-k + W =

k∑

i=1

wi · p̂qi(↑)

3 Note that the meta-learner aims to predict the MAE for a new dataset. Consequently,
meta-learners with the lowest MAE can be combined.

Enhancing Quantification through Meta-Learning 45

where p̂qi(↑) represents the predicted distribution of the positive class
by qi among the k quantifiers with the smallest errors. This equation
guarantees that quantifiers with smaller errors have a greater influence
on the final quantification outcome.

5 Experiments

This section details the experiments conducted with multiple established quan-
tification algorithms and a wide range of meta-features. To reduce the presence
of bias, we collected a total of 100 datasets of binary classification problems from
di!erent domains in public data repositories [18,29]. Each dataset was chosen
not only for its diversity but also to ensure it contained enough instances to
apply the APP with a batch size of 100 instances. We prepared each dataset
by transforming incompatible attributes for machine learning through one-hot
encoding for categorical attributes and removing attributes with missing values.
Dataset descriptions and codes are available in the paper repository4.

The meta-features were extracted using the Python package Meta-Feature
Extractor (MFE) [2]. We extracted all the default meta-features from the MFE
package, resulting in a total of 111 meta-features categorized into the follow-
ing groups: Simple, Statistical, Information-Theoretic, Model-Based, and Land-
marking. Mean and standard deviation were used as summary functions to aggre-
gate the di!erent numbers of meta-features. Min-max normalization was applied
to the resulting meta-features.

Since we propose an ensemble method, we generated baseline ensembles for
a fair comparison. For every dataset, we chose k quantifiers at random and used
the median prediction of these k quantifiers as the ensemble output. We tested
1, 3, and 5 as values k. To reduce the influence of randomly selecting quantifiers,
the baseline ensembles were generated 30 times for each dataset, and the mean
result was reported for a fair comparison.

To build the meta-target we followed a structured process to accurately assess
the performance of each quantification algorithm on the selected datasets. Using
the APP, we split each dataset into training and test sets using stratified sam-
pling without replacement with 70% and 30% proportions, respectively. Then,
from the training set we learn a scorer (classifier) using Regularized Logistic Re-
gression (LR), provided by the Scikit-Learn5 library. For each dataset, we tune
the following hyperparameters: C in the range {10↑3, 10↑2, 10↑1, 1, 101, 102, 103},
and class-weight in balanced or none. Since some quantifiers require scores, tpr,
and fpr, we estimate them using 10-fold stratified cross-validation on the training
set. In our experiments, we include quantifiers that require a scorer/classifier in
an intermediate step. The following quantifiers were included: CC, ACC, MAX,
PCC, PACC, X, MS, HDy, SMM, SORD, and DyS. The hyperparameter settings
for HDy and DyS were based on [15] and [19], respectively.

4 https://github.com/Bachega/lequa2024_workshop
5 https://scikit-learn.org

https://github.com/Bachega/lequa2024_workshop
https://scikit-learn.org

46 G. B. Gomes et. al

In the testing phase, from each test dataset, we create multiple samples com-
posed of 100 instances with di!erent class distributions in each sample. The
positive class distribution in each test sample varies from 0% to 100%, in incre-
ments of 5%. We repeated each setting ten times to reduce the error variance
and averaged the results.

To assess the performance of quantifiers, we use the MAE in two situations:
estimating the meta-target of the meta-table in Step 2 and evaluating the final
performance of quantifiers. We compare the methods according to the Friedman
test with 95% confidence and the Nemenyi post-hoc test.

To evaluate the e!ectiveness of recommendations, we use the recommenda-
tion hit that evaluates the success of a recommendation system by checking if the
recommended algorithm is among the top performing ones for a given dataset.
It ensures that the recommended algorithm is either the best or performs simi-
larly to the best algorithms, thereby validating the recommender’s e!ectiveness
[30]. We employ the Random Forest algorithm as the meta-learner, utilizing the
default hyperparameters available in the Scikit-Learn library5 library.

Suppose Aopt represents the optimal quantifier algorithm for a dataset Sd,
and ASetopt denotes the set of quantifier algorithms in which each algorithm
has no significant di!erence from Aopt, including Aopt itself. The recommenda-
tion hit for a dataset Sd is defined as a binary measure that indicates whether
the recommended algorithm Arec is in the optimal algorithm set. Therefore,
Hit(Arec, Sd) = 1 indicates that the recommendation is e!ective and the rec-
ommended quantifier algorithm Arec is included in ASetopt for Sd. Conversely,
Hit(Arec, Sd) = 0 means that the recommended quantifier algorithm Arec does
not belong to ASetopt. In other words, Arec performs significantly worse than
the optimal quantifier algorithm Aopt on Sd, indicating a poor recommendation.
The ASetopt set for each dataset is defined using a Friedman test followed by
the Conover post-hoc test with Holm procedure, as recommended by [30], per-
formed at a significance level of 0.05. To evaluate the recommendation system,
we calculate the average Hit Ratio using Leave-One-Out across all datasets S:

Hit Ratio(Arec,S) =
1

M

M∑

d=1

Hit(Arec,Sd)

6 Results

Our meta-learner achieves a Hit Ratio of 0.83 (83%) when it recommends the
best quantifier (k = 1), which means that for 83 out of 100 datasets, the recom-
mended quantifier is optimal, according to the Hit Ratio measure. As we consider
the recommendation of the Top-3 (k = 3) and Top-5 (k = 5) scenarios, the Hit
Ratios increase to 0.97 (97%) and 1.00 (100%), respectively. These results were
expected given the criterion utilized by the Hit Ratio, which is based on a statis-
tical test to define the k best quantifiers. This means that a Hit is recorded not
only for the absolute best quantifier but also for those that do not have a statis-
tically significant di!erence from the best one, ensuring a more comprehensive

Enhancing Quantification through Meta-Learning 47

evaluation of the recommended quantifiers’ e!ectiveness. These results support
our main hypothesis that an MtL architecture can e!ectively recommend high-
quality quantifiers according to the characteristics of each dataset.

Inspired by our preliminary findings, our subsequent analysis seeks to demon-
strate the improvement in quantification outcomes achieved by either suggesting
the optimal quantifier (k = 1) or constructing an ensemble composed of the k
recommended quantifiers, as outlined in Step 4 of our architecture. Figure 6 sum-
marizes the results to illustrate the overall performance in terms of the average
ranking of quantifiers across 100 datasets.

Fig. 6: Aggregation of several rank positions for all quantifiers, including those recom-
mended by our MtL architecture.

To compute the average ranking for each dataset, we first assess the rank-
ing of all quantifiers based on MAE for each dataset and subsequently calculate
the mean ranks across all datasets. The quantifier that provides minimum MAE
is ranked first. We highlight that the Leave-One-Out cross-validation was em-
ployed, ensuring that the dataset under testing is excluded from the training
partition of the meta-leaner induction. Consequently, each dataset is tested in-
dividually while not contributing to the training process, providing an unbiased
evaluation of the recommendation architecture’s performance. This rigorous val-
idation technique enhances the reliability of our results by ensuring that the
model’s predictions are not influenced by prior exposure to the test dataset.

Our MtL architecture improves on the best quantifiers and outperforms them
in a large number of datasets from a variety of domains. This achievement corrob-
orates our ancillary hypothesis, demonstrating the robustness and adaptability
of our recommendation architecture. Additionally, our proposal helps to select
the best k quantifiers using the Hit Ratio criterion, enabling the construction
of an ensemble of quantifiers in a data-driven scheme. This approach further
enhances the accuracy and reliability of quantification tasks by leveraging the
combined strengths of multiple quantifiers tailored to the unique characteristics

48 G. B. Gomes et. al

of each dataset. Figure 7 shows the critical di!erence diagram for all quantifica-
tion approaches, including those built by our architecture.

6 8 10 12 14 16

Top-3(5.8)
Top-3+W (5.8)

Top-5(5.9)
Top-1(6.1)

Top-5+W (6.8)
DyS (7.8)

Baselinek = 5 (7.8)
SORD (8.2)

Baselinek = 3 (9.7)
SMM (9.7)

(17) PCC
(16) CC
(15) PACC
(13) Baselinek = 1
(12) ACC
(12) X
(11) HDy
(11) MAX
(9.8) MS

Fig. 7: Friedman’s Nemenyi post-hoc test [7] for mean absolute quantification error.
Groups of methods that are not significantly di"erent at p < 0.05 are connected.

Our architecture identified the optimal quantifier for most datasets (Top-
1), leading to enhanced performance compared to choosing a single quantifier
(DyS). The results reveal that the recommended quantifier significantly outper-
form most quantifiers, except DyS and SORD. Using our architecture to select
a quantifier for a given dataset, or applying our proposed ensemble methods,
resulted in a statistical better performance than any other existing quantifier,
except DyS and SORD. Although no statistical di!erence was observed between
our proposals and state-of-the-art quantifiers, choosing a base quantifier tailored
by data characteristics through our meta-learning approach proves to be highly
e!ective and stable, being Top-1 ranked consistently better than any other ex-
isting methods.

The comparison between ensemble and nonensemble methods might be con-
sidered unfair. Thus, we include baseline ensembles that select k quantifiers ran-
domly. The proposed ensembles consistently outperform the baselines. Whether
weighted or not, the Top-3 and Top-5 methods demonstrate superior e!ective-
ness compared to the baselines, which confirms that building ensembles through
meta-learning leads to better quantification accuracy. Interestingly, the base-
lines also demonstrate competitive performance, particularly Baselinek=3 and
Baselinek=5, surpassing most base quantifiers. The comparable performance of
most base quantifiers can explain this result, as also noted by [27].

Finally, our ensembles consistently outperform the baseline methods and base
methods, with the di!erences being statistically significant in most cases.

7 Conclusion

This paper presents the first architecture for quantifier recommendation using
meta-learning, significantly improving the e"ciency and e!ectiveness of quan-

Enhancing Quantification through Meta-Learning 49

tification tasks. By analyzing datasets through meta-features, our approach pre-
dicts the most suitable quantification algorithm for each dataset. Our method
can identify the best quantifier for 83% of the studied datasets. Furthermore,
our ensemble strategies outperform other state-of-the-art quantifiers, highlight-
ing the robustness of our approach.

Our main contributions include introducing a meta-learning-based scheme
for quantifier recommendation, validating its e!ectiveness through extensive ex-
periments, and demonstrating the potential of ensemble strategies to surpass
individual quantifiers. Our architecture is in its early stages, with potential for
exploring additional ensemble-building strategies to enhance robustness and per-
formance. Future research should map and analyze situations where recommen-
dations fail, providing insights to refine the recommendation mechanism.

Acknowledgments. We thank the National Council for Scientific and Techno-
logical Development (CNPq) (001440855/2022-5) and the Ministry of Science,
Technology and Innovation of Brazil (MCTI) for funding and support.

References

1. Aguiar, G.J., Mantovani, R.G., Mastelini, S.M., de Carvalho, A.C., Campos, G.F.,
Junior, S.B.: A meta-learning approach for selecting image segmentation algorithm.
Pattern Recognit. Lett. 128, 480–487 (2019)

2. Alcobaça, E., Siqueira, F., Rivolli, A., Garcia, L.P., Oliva, J.T., De Carvalho, A.C.:
Mfe: Towards reproducible meta-feature extraction. J. Mach. Learn. Res. 21(111),
1–5 (2020)

3. Alexandros, K., Melanie, H.: Model selection via meta-learning: a comparative
study. Int. J. Artif. Intell. Tools 10(04), 525–554 (2001)

4. Ali, S., Smith, K.A.: On learning algorithm selection for classification. Appl. Soft
Comput. 6(2), 119–138 (2006)

5. Bella, A., Ferri, C., Hernández-Orallo, J., Ramirez-Quintana, M.J.: Quantification
via probability estimators. In: IEEE ICDM. pp. 737–742. IEEE (2010)

6. Brazdil, P., Carrier, C.G., Soares, C., Vilalta, R.: Metalearning: Applications to
data mining. Springer Science & Business Media (2008)

7. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach.
Learn. Res. 7, 1–30 (2006)

8. das Dôres, S.N., Alves, L., Ruiz, D.D., Barros, R.C.: A meta-learning framework for
algorithm recommendation in software fault prediction. In: SAC – ACM SIGAPP.
pp. 1486–1491. ACM, Pisa, Italy (Apr 2016)

9. Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense
of Data. Cambridge University Press, USA (2012)

10. Forman, G.: Counting positives accurately despite inaccurate classification. In:
ECML PKDD. pp. 564–575. Springer (2005)

11. Forman, G.: Quantifying trends accurately despite classifier error and class imbal-
ance. In: KDD – ACM SIGKDD. pp. 157–166. ACM (2006)

12. Garcia, L., Lorena, A., Lehmann, J.: Ecol: Complexity measures for classification
problems (2018)

13. González, P., Castaño, A., Chawla, N.V., Coz, J.J.D.: A review on quantification
learning. ACM Comput. Surv. 50(5), 74 (2017)

50 G. B. Gomes et. al

14. González, P., Moreo, A., Sebastiani, F.: Binary quantification and dataset shift:
an experimental investigation. Data Min. Knowl. Discovery pp. 1–43 (2024)

15. González-Castro, V., Alaiz-Rodríguez, R., Alegre, E.: Class distribution estimation
based on the hellinger distance. Inf. Sci. 218, 146 – 164 (2013)

16. Hassan, W., Maletzke, A., Batista, G.: Accurately quantifying a billion instances
per second. In: IEEE DSAA. pp. 1–10. IEEE, Sydney, Australia (2020)

17. Hassan, W., Maletzke, A., Batista, G.: Pitfalls in quantification assessment.
In: International Workshop on Learning to Quantify: Methods and Applica-
tions(LQ2021). vol. 3052. CIKM, GoldCoast, Australia (05 Nov 2021)

18. Kelly, M., Longjohn, R., Nottingham, K.: The uci machine learning repository.
https://archive.ics.uci.edu (2023)

19. Maletzke, A., dos Reis, D., Cherman, E., Batista, G.: Dys: a framework for mixture
models in quantification. In: AAAI. Honolulu, United States (2019)

20. Maletzke, A., Hassan, W., Reis, D.d., Batista, G.: The importance of the test
set size in quantification assessment. In: IJCAI. pp. 2640–2646. Yokohama, Japan
(July 2020)

21. Mantovani, R.G., Rossi, A.L., Alcobaça, E., Vanschoren, J., de Carvalho, A.C.: A
meta-learning recommender system for hyperparameter tuning: Predicting when
tuning improves svm classifiers. Inf. Sci. 501, 193–221 (2019)

22. Milli, L., Monreale, A., Rossetti, G., Giannotti, F., Pedreschi, D., Sebastiani, F.:
Quantification trees. In: IEEE ICDM. pp. 528–536. IEEE, Abu Dhabi, United Arab
Emirates (2013)

23. Olmo, J.L., Romero, C., Gibaja, E., Ventura, S.: Improving meta-learning for algo-
rithm selection by using multi-label classification: A case of study with educational
data sets. Int. J. Comput. Intell. Syst. 8(6), 1144–1164 (2015)

24. Pimentel, B.A., De Carvalho, A.C.: A new data characterization for selecting clus-
tering algorithms using meta-learning. Inf. Sci. 477, 203–219 (2019)

25. Rivolli, A., Garcia, L.P., Soares, C., Vanschoren, J., de Carvalho, A.C.: Meta-
features for meta-learning. Knowledge-Based Syst. 240, 108101 (2022)

26. Saerens, M., Latinne, P., Decaestecker, C.: Adjusting the outputs of a classifier to
new a priori probabilities: a simple procedure. Neural Comput. 14(1), 21–41 (2002)

27. Schumacher, T., Strohmaier, M., Lemmerich, F.: A comparative evaluation of quan-
tification methods. arXiv preprint arXiv:2103.03223 (2021)

28. Sebastiani, F.: Evaluation measures for quantification: An axiomatic approach. Inf.
Retr. J. 23(3), 255–288 (2020)

29. Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: Openml: networked science in
machine learning. SIGKDD Explorations 15(2), 49–60 (2013). https://doi.org/
10.1145/2641190.2641198

30. Wang, G., Song, Q., Sun, H., Zhang, X., Xu, B., Zhou, Y.: A feature subset selection
algorithm automatic recommendation method. J. Artif. Intell. Res. 47, 1–34 (2013)

31. Zhang, X., Li, R., Zhang, B., Yang, Y., Guo, J., Ji, X.: An instance-based learning
recommendation algorithm of imbalance handling methods. Appl. Math. Comput.
351, 204–218 (2019)

32. Zhu, X., Yang, X., Ying, C., Wang, G.: A new classification algorithm recom-
mendation method based on link prediction. Knowledge-Based Syst. 159, 171–185
(2018)

https://archive.ics.uci.edu
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/2641190.2641198

An Overview of LeQua 2024,

the 2nd International Data Challenge

on Learning to Quantify

Andrea Esuli, Alejandro Moreo, Fabrizio Sebastiani, and Gianluca Sperduti

Istituto di Scienza e Tecnologie dell’Informazione
Consiglio Nazionale delle Ricerche

56124 Pisa, Italy
{firstname.lastname}@isti.cnr.it

Abstract. LeQua 2024 is a data challenge about methods and systems
for “learning to quantify” (a.k.a. “quantification”, or “class prior estima-
tion”), i.e., for training predictors of the relative frequencies of classes
Y = {y1, ..., yn} in sets of unlabelled datapoints. While these predictions
could be easily achieved by first classifying all datapoints via a classifier
and then counting how many datapoints have been assigned to each class,
a growing body of literature has shown this approach to be suboptimal,
especially when the training data and the test data are a!ected by some
form of dataset shift, and has proposed better methods. The goal of this
data challenge is to provide a setting for the comparative evaluation of
methods for learning to quantify. LeQua 2024 is the 2nd edition of the
LeQua challenge, following the successful 1st edition of 2022.

In LeQua 2024, four tasks were o!ered. The first three tasks (T1, T2,
T3) tackle learning to quantify under prior probability shift, while the
fourth task (T4) tackles learning to quantify under covariate shift; T1
and T4 are about binary quantification, T2 is about single-label mul-
ticlass quantification, while T3 is about ordinal quantification. For all
such tasks, data are provided to participants in ready-made vector form.
In this overview article we describe in detail the structure of the data
challenge and the results obtained by the participating teams.

1 Learning to Quantify

In a number of applications involving classification, the final goal is not determin-
ing which class (or classes) individual unlabelled datapoints (e.g., textual docu-
ments, images, or other) belong to, but estimating the prevalence (or “relative
frequency”, or “prior probability”, or “prior”) of each class y → Y = {y1, ..., yn}
in the unlabelled data. Training predictors of the class prevalence values in unla-
belled data is known as learning to quantify (LQ – a.k.a. quantification, or class
prior estimation) [14, 19, 22].

LQ has several applications in fields (such as the social sciences, political
science, market research, epidemiology, and ecological modelling) which are in-
herently interested in characterising aggregations of individuals, rather than the

52 Andrea Esuli et al.

individuals themselves; disciplines like the ones above are usually not interested
in finding the needle in the haystack, but in characterising the haystack. For
instance, in most applications of tweet sentiment classification we are not con-
cerned with estimating the true class (e.g., Positive, or Negative, or Neutral) of
individual tweets. Rather, we are concerned with estimating the relative fre-
quencies of these classes in the set of unlabelled tweets under study; or, put in
another way, we are interested in estimating as accurately as possible the true
distribution of tweets across the classes.

It has by now unequivocally been shown that performing quantification by
classifying each unlabelled instance and then counting, for each class, the in-
stances that have been attributed to the class (the “classify and count” method),
usually leads to poor quantification accuracy (see e.g., [3, 7, 9, 12, 13, 23, 33, 34]),
due to (a) classifier bias and the mismatch between classification loss and quan-
tification loss, and (b) the presence of dataset shift (see below). This subopti-
mality of “classify and count” also evokes “Vapnik’s principle” [49], which states

If you possess a restricted amount of information for solving some prob-
lem, try to solve the problem directly and never solve a more general
problem as an intermediate step. It is possible that the available infor-
mation is su!cient for a direct solution but is insu!cient for solving a
more general intermediate problem.

In our case, the problem to be solved directly is quantification, while the more
general intermediate problem is classification.

One reason why “classify and count” is suboptimal is that many application
scenarios su”er from dataset shift [31, 41], defined as the situation in which the
distribution P (X,Y) from which the labelled training data L have been drawn
is di”erent from the distribution Q(X,Y) from which the unlabelled data U
have been drawn. The presence of dataset shift means that the well-known IID
assumption, on which most learning algorithms for training classifiers hinge, does
not hold. In turn, this means that “classify and count” will perform suboptimally
on sets of unlabelled datapoints that exhibit dataset shift with respect to the
training set, and that the higher the amount of this shift, the worse we can
expect “classify and count” to perform.

As a result of the suboptimality of the “classify and count” method, LQ has
slowly evolved as a task in its own right, di”erent (in goals, methods, techniques,
and evaluation measures) from classification [14,22]. For the near future it is easy
to foresee that the interest in LQ will increase, due (a) to the increased awareness
that “classify and count” is a suboptimal solution when it comes to prevalence
estimation, and (b) to the fact that, with larger and larger quantities of data
becoming available and requiring interpretation, in more and more scenarios we
will only be able to a”ord to analyse these data at the aggregate level rather
than individually.

LeQua 2024 (https://lequa2024.github.io/) follows in the footsteps of
LeQua 2022 [16,17], the first edition of this data challenge. LeQua 2022 was the
first data challenge ever to be entirely devoted to quantification; while this topic
had surfaced in previous shared tasks, it had never been their real focus.

An Overview of LeQua 2024 53

2 Setting up LeQua 2024

In quantification, a datapoint (usually represented as x) is the individual unit of
information; for instance, a textual document, an image, a video, are examples of
datapoints. As in LeQua 2022, as datapoints we use textual objects (and, more
specifically, product reviews); however, this choice causes no loss of generality,
since these textual objects are provided to the participants already in vector
form.

A datapoint x has a class label, i.e., it belongs to a certain class y → Y =
{y1, ..., yn}; in this case we indicated by y the label of x. In LeQua 2024, the
classes are either the merchandise classes to which the products belong, or the
sentiment scores that the authors have attached to the reviews they have writ-
ten (see Section 2.2 for more). Some datapoints are such that their label is
known to the quantification algorithm, and are thus called labelled datapoints ;
we typically use them as training examples for the quantifier-training algorithm.
Some other datapoints are such that their label is unknown to the quantifier-
training algorithm and to the trained quantifier, and are thus called unlabelled
datapoints; for testing purposes we use datapoints whose label we hide to the
quantifier-training algorithm and to the trained quantifier, and thus play the
role of unlabelled datapoints.

Unlike a classifier, a quantifier must not predict labels for individual data-
points, but must predict prevalence values for samples (i.e., sets) of unlabelled
datapoints. A prevalence value pω(yi) for a class yi → Y and a sample ω is a
number in [0,1] such that the prevalence values pω(y1), ..., pω(yn) for the classes
in Y sum up to 1; in other words, pω(y1), ..., pω(yn) are a distribution of the dat-
apoints of ω over Y. Note that when, in the following, we use the term “label”,
we always refer to the label of an individual datapoint (and not of a sample of
datapoints; samples do not have labels, but prevalence values for classes).

2.1 The tasks

LeQua 2022 o”ered four tasks. In two of them, all (training, development, and
test) datapoints were provided to participants in ready-made vector form, while
in the other two the datapoints were provided in their original textual form. Each
of these modalities included two variants: binary quantification and single-label
multiclass quantification. In all four tasks, the data were characterised by prior
probability shift (see below).

LeQua 2024 also o”ered four tasks (called T1, T2, T3, T4), but these tasks
were (at least partially di”erent) from those of LeQua 2024; in particular,

– In all LeQua 2024 tasks, the datapoints were provided to the participants
in ready-made vector form; the goal was to allow the participants to con-
centrate on optimising their quantification methods, rather than spending
time on optimising the process for producing vectorial representations of the
datapoints.

– LeQua 2024 includes tasks characterised by di”erent types of dataset shift.

54 Andrea Esuli et al.

Task Codeframe structure Type of dataset shift

T1 Binary Prior probability shift
T2 Single-label multiclass Prior probability shift
T3 Ordinal Prior probability shift
T4 Binary Covariate shift

Table 1: Main characteristics of the four tasks o”ered within LeQua 2024.

The main characteristics of the four tasks o”ered within LeQua 2024 are suc-
cinctly described in Table 1.

For each task, participant teams were required not to use any kind of (training
/ development / test) datapoints other than those provided for that task.

2.2 The data pool

The data we use are Amazon product reviews from a large crawl of such reviews
(the same crawl we had used for LeQua 2022). From the result of this crawl we
remove (a) all reviews shorter than 200 characters, and (b) all reviews that have
not been recognised as “useful” by any user;1 this yields the “pool” ε of reviews
that we use for our experimentation.

As for the set Y of class labels,

– for the two binary tasks (T1 and T4) we use two sentiment labels, i.e.,
Positive, which encompasses 4-stars and 5-stars reviews, and Negative, which
encompasses 1-star and 2-stars reviews (we discard 3-stars reviews);

– for the multiclass task (T2) we use 28 topic labels, representing the mer-
chandise class the product belongs to (e.g., Automotive, Baby, Beauty);2

– for the ordinal task (T3) we use the original sentiment label, which ranges
on {1-Star, 2-Stars, 3-Stars, 4-Stars, 5-Stars}.

In order to generate the vectorial representations of the reviews we use the
ELECTRA-Small model [10], giving each review in input to the generator and
using the last hidden state of the model as the representation of the review. Each
review is thus represented by a real-valued vector with 256 dimensions.

The data we use for LeQua 2024 are di”erent from the ones we used for
LeQua 2022. The main di”erence is that (a) di”erent datapoints are chosen for
the training samples, for the validation samples, and for the test samples, and
(b) a di”erent vectorisation is used (while we here use the ELECTRA-Small
model, LeQua 2022 used a vectorisation method based on GloVe vectors [39]).

1 This is meant to filter our “bogus” reviews (e.g., “I’m giving this 1 star because the
package was damaged!”) that would be di”cult for any classifier to label correctly.

2 The set of 28 topic classes is flat, i.e., there is no hierarchy defined upon it.

An Overview of LeQua 2024 55

2.3 Types of dataset shift and types of data extraction protocols

Dataset shift is defined as the situation in which (i) the training (and develop-
ment) data that are used for training a model are sampled from a joint distri-
bution P (X,Y), (ii) the unlabelled data on which the trained model is deployed
are sampled from a joint distribution Q(X,Y), and (iii) P (X,Y) ↑= Q(X,Y).

In LeQua 2024 we consider two types of dataset shift, i.e.,

1. prior probability shift (also known as label shift), defined as the case in which
P (Y) ↑= Q(Y) and P (X|Y) = Q(X|Y);

2. covariate shift, defined as the case in which P (X) ↑= Q(X) and P (Y |X) =
Q(Y |X).

The literature on quantification has mostly tackled prior probability shift, and
only a few papers [5,23,48] have touched on the relationships between quantifi-
cation and covariate shift.

2.4 The baseline systems

Wemade the participants aware of the availability of QuaPy [32], a Python-based
open-source library3 for quantification research and development that provides
implementations of methods, evaluation measures, parameter optimisation rou-
tines, and evaluation protocols.

The implementations of the quantification methods we used as baselines can
be accessed via GitHub.4 These methods include:

– Classify and Count (CC): This is the trivial baseline, consisting in training
a standard classifier h on the training set L, using this classifier to classify
all the data items x in the sample ω, counting how many such items have
been attributed to class yi, doing this for all classes in Y, and dividing the
resulting counts by the cardinality |ω| of the sample.

– Probabilistic Classify and Count (PCC) [2]: This is a probabilistic vari-
ant of CC where the “hard” classifier h is replaced by a “soft” (probabilistic)
classifier s, and where counts are replaced by expected counts.

– Adjusted Classify and Count (ACC) [19]: This is an “adjusted” variant
of CC in which the prevalence values predicted by CC are subsequently cor-
rected by considering the misclassification rates of classifier h, as estimated
on a held-out validation set. For our experiments, this held-out set consists
of 40% of the training set.

– Probabilistic Adjusted Classify and Count (PACC) [2]: This is a prob-
abilistic variant of ACC where the “hard” classifier h is replaced by a “soft”
(probabilistic) classifier s, and where counts are replaced by expected counts.
Equivalently, it is an “adjusted” variant of PCC in which the prevalence val-
ues predicted by PCC are corrected by considering the (probabilistic versions

3
https://github.com/HLT-ISTI/QuaPy

4 Check the branch https://github.com/HLT-ISTI/QuaPy/tree/lequa2024/

LeQua2024

56 Andrea Esuli et al.

of the) misclassification rates of soft classifier s, as estimated on a held-out
validation set. For our experiments, this held-out set consists of 40% of the
training set.

– The Saerens-Latinne-Decaestecker algorithm (SLD) [43] (see also [15]):
This is a method based on Expectation Maximization, whereby the posterior
probabilities returned by a soft classifier s for data items in an unlabelled
set U , and the class prevalence values for U , are iteratively updated in a
mutually recursive fashion.

– DM, a multiclass implementation of the distribution-matching approach
that adheres to the framework proposed by [4, 18], in which the divergence
measure to minimise is the Hellinger Distance.

– The recently proposedKDEy algorithm [35], a distribution-matching method
that models the distribution of the posterior probabilities using kernel den-
sity estimation. In particular, we adopt the variant that uses the Kullback-
Leibler divergence as the target loss to minimise, which is akin to maximising
the likelihood of the test data.

For all methods, we have trained the underlying classifiers via logistic regression,
as implemented in the scikit-learn framework.5 Note that all these methods
are natively multiclass.

We optimize two hyperparameters of the logistic regression learner by ex-
ploring C (the inverse of the regularization strength) in the range {10→4, 10→3,
. . ., 10+4} and class weight (indicating the relative importance of each class)
in {“balanced”, “not-balanced”}. For DM, we also explore the number of bins
in the range {2, 3, . . . , 10, 12, . . . , 32, 64}. For KDEy, we additionally explore the
bandwidth in the range {0.01, 0.02, . . . , 0.20}. For each quantification method,
model selection is carried out by choosing the combination of hyperparameters
that yields the lowest o!cial evaluation error used for each task across all vali-
dation samples made available to it.

2.5 Task T1: Binary Quantification under Prior Probability Shift

Task T1 is essentially the same as task T1A in LeQua 2022, i.e., it is a bi-
nary quantification task on data a”ected by prior probability shift, and was
re-proposed in LeQua 2024 in order to monitor the progress of the field on what
can be considered the “mother” of all quantification tasks.

As mentioned in Section 2.2, the datapoints here have binary sentiment la-
bels, obtained by considering as Positive all 4-stars and 5-stars reviews and by
considering as Negative all 1-star and 2-stars reviews.

To obtain our data, first of all we removed from our pool ε all reviews scored
“3-stars”. We then obtained the L1 training set by randomly extracting 5000
reviews from ε (di”erent from those we used in LeQua 2022), after which we
removed them from ε; the prevalence values of the positives and of the negatives
in the extracted set are 0.78 and 0.22, respectively. Subsequently, we simulated

5
https://scikit-learn.org/stable/index.html

An Overview of LeQua 2024 57

the presence of prior probability shift by extracting from ε development samples
and test samples according to the artificial prevalence protocol (APP), by now
a standard protocol for artificially injecting prior probability shift in the data to
be used in the evaluation of quantifiers.

In the general multiclass case, the APP consists of taking the set ε of data-
points remaining after the extraction of the training set, and extracting from it a
number of subsets (the development samples and the test samples), each charac-
terised by a predetermined vector (pω(y1), ..., pω(yn)) of prevalence values, where
y1, ..., yn are the classes of interest. In other words, for extracting a sample ω, we
generate a vector of prevalence values, and randomly select datapoints from ε
accordingly (i.e., by class-conditional random selection of datapoints, until the
desired class prevalence values are obtained). Note that in the data released to
the participants, for each development sample only the prevalence values that
characterise the sample, and not the label of each individual datapoint, was
disclosed. The goal of the APP is to generate samples characterised by widely
di”erent vectors of prevalence values; this is meant to test the robustness of a
quantifier (i.e., of an estimator of class prevalence values) in confronting class
prevalence values possibly di”erent (or very di”erent) from the ones of the set
it has been trained on. For doing this we draw the vectors of class prevalence
values uniformly at random from the set of all legitimate such vectors, i.e., from
the unit (n↓1)-simplex of all vectors (pω(y1), ..., pω(yn)) such that pω(yi) → [0, 1]
for all yi → Y and

∑
yi↑Y pω(yi) = 1. For this we use the Kraemer algorithm [47],

whose goal is that of sampling in such a way that all legitimate class distribu-
tions are picked with equal probability. For each vector thus picked we randomly
generate a test sample.

Note that the APP indeed simulates prior probability shift, since

– the fact that the samples are randomly selected according to a pre-specified
vector of probability values di”erent (in general) from the one that charac-
terises the training set, simulates condition P (Y) ↑= Q(Y);

– the fact that the samples are drawn from the same data source from which
the training data are drawn simulates condition P (X|Y) = Q(X|Y);

– these two conditions are (see Bullet 1 in Section 2.3) what altogether char-
acterise prior probability shift.

In the binary case (n = 2), for generating the D1 development set we used the
APP to extract 1000 development samples consisting of 250 reviews each; for
generating the U1 test set we extracted, in the same way, 5000 test samples also
consisting of 250 reviews each. The prevalence values for all samples in U1 were
disclosed to the participants after the end of the challenge.

The evaluation measure. In a theoretical study on the adequacy of evaluation
measures for quantification [46], relative absolute error (RAE) and absolute error
(AE) have been found to be, for binary and multiclass quantification, the most
satisfactory, and are thus the only measures used in LeQua 2022. RAE and AE

58 Andrea Esuli et al.

are defined as

RAE(pω, p̂ω) =
1

n

∑

y↑Y

|p̂ω(y)↓ pω(y)|
pω(y)

(1)

AE(pω, p̂ω) =
1

n

∑

y↑Y
|p̂ω(y)↓ pω(y)| (2)

where pω is the true distribution on sample ω, p̂ω is the predicted distribution,
Y is the set of classes of interest, and n = |Y|. Note that RAE is undefined
when at least one of the classes y → Y is such that its prevalence in the sample
ω of unlabelled datapoints is 0. To solve this problem, in computing RAE we
smooth all pω(y)’s and p̂ω(y)’s via additive smoothing, i.e., we take p

ω
(y) =

(ϑ+pω(y))/(ϑ ·n+1), where p
ω
(y) denotes the smoothed version of pω(y) and the

denominator is just a normalising factor (same for the p̂
ω
(y)’s); following [21], we

use the quantity ϑ = 1/(2|ω|) as the smoothing factor. In Equation 1 we then use
the smoothed versions of pω(y) and p̂ω(y) in place of their original non-smoothed
versions; as a result, RAE is now always defined.

As the o!cial measure according to which systems are ranked, we use RAE;
we also compute AE results, but we do not use them for ranking the systems.
The o!cial score obtained by a given quantifier is the average value of the
o!cial evaluation measure (RAE) across all test samples; for each system we
also compute and report the value of AE. For T1 (but we will do the same for
T2, T3, T4 too) we use the Wilcoxon signed-rank test at di”erent confidence
levels (ϖ = 0.05 and ϖ = 0.001) to identify all participant runs that are not
statistically significantly di”erent from the best run, in terms of RAE and in
terms of AE.

2.6 Task T2: Single-Label Multiclass Quantification under Prior

Probability Shift

Similarly to Task T1, Task T2 is essentially the same as task T1B in LeQua
2022, i.e., it is a single-label multi-class quantification task on data a”ected by
prior probability shift, and was reproposed in LeQua 2024. Aside from the fact
that T1 is binary and T2 is multiclass, the two subtasks are very similar.

Task T2 uses 28 topic labels (the same as in T1B of LeQua 2022), representing
the merchandise classes to which Amazon products belong to. We have randomly
sampled 20,000 reviews from the pool ε for use as the training set L2. Following
the same protocol adopted for Task T1, we remove the reviews of L2 from ε,
and from this reduced pool we extract a development set D2 composed of 1,000
development samples, each composed of 1,000 reviews. Any review appearing
in a development sample is then removed from ε, after which we proceed with
the extraction of the U2 test set, composed of 5,000 test samples consisting of
of 1,000 reviews each. As the evaluation measures, here too we compute RAE
(which is also used for ranking the systems) and AE. All other choices made in
the design of this experimental setting are the same as for T1.

An Overview of LeQua 2024 59

2.7 Task T3: Ordinal Quantification under Prior Probability Shift

Task T3 is about quantification using an ordinal scale, under prior probability
shift; this task is new in LeQua 2024, since no ordinal scales were used in LeQua
2022. The quantification task is defined on a 1-star to 5-stars scale based on the
scores assigned to the reviews by their authors. The total order relation among
the five possible ratings makes this problem di”erent from a single-label multi-
class problem, since misassigning a probability mass to a class faraway from the
correct class is a more serious mistake than misassigning it to a class closer in
the total order.

For this first edition of the task we chose to follow the natural distribution
of data in the pool. The training set is thus composed of samples, i.e., sets of
reviews; each sample is composed of reviews of the same product. This is di”erent
from the training sets of the other tasks, which are just composed of reviews and
leave the use of possible sampling strategies for training up to the participants.
Obviously, nothing prevents participants to T3 from building di”erent samples
from the entire set of reviews contained in the training set of the task.

The training set L3 is composed of 100 samples, each associated to a specific
product; the 100 products were randomly selected from those with at least 200
reviews in ε. Each sample in L3 is composed of exactly 200 reviews. For products
with more than 200 reviews we randomly sampled 200 reviews using a stratified
random selection. This sampling protocol is known as the natural prevalence
protocol (NPP). In the case of T3 the PPS among the samples is thus originated
by the natural di”erence in the reviews that products of di”erent quality receive.
Our choice of the NPP in place of the APP is motivated by a shortage of data,
that would prevent a good APP sampling: the selection of 6,100 products with
at least 200 reviews ended up with a large portion of products having just a little
more than 200 reviews6, making the APP eventually produce many unrealistic
samples mostly composed of duplicate documents.

Samples in L3 were provided to participants with the star rating of each
review. We then removed the 100 products selected for the training set from
the pool and all of their reviews, and we identified a set of 1,000 products for
the development set D3. Each development sample is composed of 200 reviews.
Being a development set, the participants were provided with the prevalence of
star ratings for each sample, and not the star rating of the single reviews. After
removing also the products in the development set from the pool, we sample the
test set U3. The test is composed of 5,000 test samples, related to 5,000 di”erent
products, each sample consisting of 200 reviews. Participants had no access to
labels or prevalence values for samples in U3, which have been released publicly
after the end of the challenge.

The evaluation measure. The evaluation of quantification predictions for T3
requires taking into account the ordinal scale of the labels when comparing the

6 This is due to a long-tailed distribution in the original pool, in which few products
have many reviews, and many products have very few reviews.

60 Andrea Esuli et al.

true and predicted distributions. A measure derived from the Earth Mover’s
Distance, the Normalised Match Distance (NMD) [44, 50], takes into account
the ordinal relations between classes. NMD is defined as

NMD(pω, p̂ω) =
1

n↓ 1

n→1∑

j=1

d(yj , yj+1) · |
j∑

i=1

p̂ω(yi)↓
j∑

i=1

pω(yi)| (3)

where 1
n→1 is a normalisation factor that allows NMD to range between 0 (best)

and 1 (worst), and d(yi, yi+1) is the distance in the ordinal scale among two
consecutive labels, which we assume to be always 1. Given all the samples in
the test set U3, each with a true distribution and a predicted distribution, we
evaluate NMD for each sample and compute the mean NMD value across all the
samples.

In this first edition of T3 we sampled the distributions randomly from the
pool, thus replicating in the validation and the test sets the natural unbalance
of star-rating distributions towards a high number of stars. By doing a simple
mean across all the samples, the more frequent distributions skewed towards a
high number of stars give a bigger contribution to NMD. For this reason we
evaluate also a macro version of NMD (Macro-NMD). We define n↓ 1 bins, one
of each interval from 1 to n, assigning each sample to the bin corresponding to
the average of the ordinal labels in the sample. The NMD value is computed for
each bin separately, and the Macro-NMD is the mean the resulting n↓ 1 NMD
values. In this way the Macro-NMD gives to the whole spectrum of mean ratings
an equal relevance, regardless of how the samples are distributed.

2.8 Task T4: Binary Quantification under Covariate Shift

Another novel task for LeQua is the binary quantification under covariate shift.
Any task presented so far in LeQua 2022, and the other tasks of LeQua 2024 are
concerned only with PPS, i.e., P (Y) ↑= Q(Y), while this novel challenge adds
also covariate shift, i.e., P (X) ↑= Q(X).

The quantification task of T4 is the same of T1, with the fundamental dif-
ference in the sampling process that generates the various sets. The training
set L4 is composed of 5,000 reviews. Reviews are sampled from the a restricted
pool that includes only reviewer for products in the Books or in the Electronics
categories. We use these two domains to simulate covariate shift because they
are the biggest ones. We consider as negative the reviews with one or two stars,
and as positive those with four or five stars, discarding the reviews with three
stars. The sampling for L4 is composed of 90% of Books reviews and 10% Elec-
tronics reviews. We chose this ratio to be able to simulate a broad range of
covariate shift in the development and test samples by varying the ratio of sam-
pling among the two categories. For the training set the sampling is stratified
with respect to the sentiment labels, i.e., we replicate the natural distribution
of labels from the sampling pool. The development set D4 is composed of 1,000
development samples, each one composed of 250 reviews. The sampling pool of
D4 is the one of L4 minus the reviews already included in L4. The sampling

An Overview of LeQua 2024 61

Table 2: The teams who participated in LeQua 2024 and the tasks for which
they submitted runs.

T1 T2 T3 T4
Lamarr x x x x
UniOeste x
TeamCUFE x x x x
UniOviedo(Team1) x x x
UniOviedo(Team2) x
UniLeiden x
UNSW x x

strategy of development samples uses APP on sentiment labels and also on the
two categories. APP on sentiment labels generates PPS, while APP on the two
categories generates covariate shift. For example, a sample can be created setting
a 80%-20% distribution on sentiment labels and a 40%-60% distribution among
categories. In this case, 32% of the reviews will be sampled from positive reviews
in Books, 48% from positive reviews in Electronics, 8% of negative reviews in
Books, and the remaining 12% from negative reviews in Electronics. The test
set U4 is generated in the same way of D4. The test set samples are 5,000, each
one composed of 250 reviews.

Since this is a binary quantification task, the evaluation measures we use are
the same as in T1, i.e., RAE (our o!cial evaluation measure for ranking the
systems), and AE.

2.9 Preventing data reuse across tasks

All the tasks use the same pool of documents to sample from. The training data
and the development data of each task di”ers from the one of the other tasks, but
they are closely related. This holds specially for reviews with sentiment labels
or star ratings in tasks T1, T2, and T4. In this scenario, a possible optimisation
strategy could be merging all the training data in order to improve a sentiment
classifier accuracy, which can give a sensible boost also to quantification accuracy.
This and similar reuse of data across tasks does not add any useful contribution
to the knowledge on the quantification problems and methods. We prevented
this by using for each task a di”erent random shu#e of the dimensions of the
vectors produced by embedding model, so that the vectors are informative only
within the task they belong.

3 The participating systems

Seven teams submitted runs to LeQua 2024. As shown in in Table 2, there is
a quite balanced participation across all the tasks, with a minimum of three

62 Andrea Esuli et al.

participants in T4, and a maxium of five partipants in T1 and T3. This is a
significant di”erence from LeQua 2022, when most of the participants focused
on T1A (now T1). Two teams, Lamarr and TeamCUFE, participated to all four
Tasks. We here list the teams in alphabetical order:

– Lamarr [28] submitted a run each for all four tasks. All their runs are based
on solving an optimisation problem based on the negative log-likelihood
loss proposed by [1], optimising a latent representation that is then passed
through a softmax to convert it to a probability distribution. The loss has
a regularisation component added that promotes distributions tending to-
wards uniformity, with a specific version customised for T3 that promotes
a smooth transition of distribution values across the ordinal scale. The con-
tribution of the regularisation component is controlled by a parameter. The
posteriors given as input to the optimisation process are obtained training a
multi layer perceptron for T1, T2, and T3, and a Logistic Regressor for T4.
All the hyperparameters of the classifiers and the one of the regularisation
loss have been optimised running a grid search, evaluated on the validation
data.

– UniOeste [29] submitted a run for T1. The idea is pretty straightforward.
The system consists of an ensemble of several binary quantifiers. Di”er-
ent well-known quantification systems from the literature are used, includ-
ing DyS, HDy, and SLD (among many others), and di”erent classifiers are
trained at the basis, including XGBoost, CatBoost, Random Forest, and
SVMs. Each quantifier issues a prediction for the test bag and the predic-
tions are then ranked based on the quantifiers’ performance. Only the output
of the top-performing quantifiers are used to produce the final estimation,
which is obtained by averaging the class prevalence predictions of each mem-
ber of the committee.

– TeamCUFE submitted a run each for all four tasks. This team did not
give a description of their methods, and thus they cannot be included in the
description of results.

– UniOviedo(Team1) [40] submitted a run each for T2, T3, and T4. They
employed a deep learning method that relies on a novel (permutation-in-
variant) pooling layer, which models the distribution of bag instances in a
latent space as a mixture of Gaussian distributions with learnable mean and
covariance matrices. The network uses parallel pooling layers of this type
and enhances their combined utility by regularizing them towards minimal
Centered Kernel Alignment (CKA). This method follows the “symmetric”
approach, where training instances are bags labelled by prevalence (rather
than individual data items labelled by class), thus functioning as a bag-
based regressor. As such, the network can be trained with specific error
metrics in mind. The authors optimised the network for the o!cial evaluation
metrics used in each of the tasks they participated in (RAE for T2, T4, and
NMD for T4). One of the key di”erences compared to most other participant
teams is that UniOviedo(Team1) utilised part of the validation samples not
only for model selection but also for training the model. Additionally, they

An Overview of LeQua 2024 63

also applied some data augmentation heuristics for increasing the number of
training bags.

– UniOviedo(Team2) submitted a run for T3. Although the participating
team did not submit a notebook description of their method, the members
(consisting of David Pérez Román and Juan José del Coz from the University
of Oviedo) have informed us that the method they applied correspond to
their implementation, as made available in the QuantificationLib package
[6], of the method EDy [8]. EDy belongs to the distribution-matching family
of methods and is a variant of the original Energy Distance method proposed
by [25]. EDy relies on the Earth Mover Distance (EMD – also known as the
Wasserstein loss) as the divergence measure, which is particularly well-suited
for ordinal problems, as is the case of T3.

– UniLeiden [26] submitted a run for T1. This team used the Continuous
Sweep method [27], using an optimised SVM with RBF kernel as the base
classifier. They made a comparison on validation data against three other
quantifiers, i.e., Median Sweep [20], SLD [42], and DyS [30]. They found that
Sweep-based methods performed better than the other methods when the
underlying classifier performed poorly, and vice-versa, indicating a link with
the results of [45] in which Median Sweep method performed better than
SLD and DyS on datasets with smaller training sets (and thus with a likely
lower performance of the classifier) than those used in LeQua.

– UNSW [11] participated in T1 and T2. This team proposed two ensemble
methods for these tasks. For T1, they proposed a Multiple Classifiers - Sin-
gle Quantifier method (MC-SQ). This method uses an ensemble in which
all the members are instances of the same aggregative quantifier (they used
DyS [30]) equipped with di”erent classifiers. The classification algorithms
used to form the ensemble include Logistic Regression, Linear Discriminant
Analysis, Support Vector Machines, Light Gradient Boosting Machines, Gra-
dient Boosting, and CatBoost. The simple rationale of the method is to have
many di”erent classifier which are all known to be good overall performers
and to exploit the strength of the ensemble to filter out the cases in which
some of them may perform worse. Each classifier-quantifier pair in the en-
semble was subjected to a joint hyperparameter optimisation. This means
that each DyS instance in the ensemble has its own optimised number of
bins that is dependent on the specific classifier the quantifier is paired with.
Given a test sample, all the quantifiers in the ensemble make their predic-
tions, and the median value is taken as the final prediction of the MC-SQ
method. For T2, UNSW followed an approach that is the opposite of T1:
a single classification algorithm paired with many di”erent quantifiers, i.e.,
a Single-Classifier - Multiple Quantifiers (SC-MQ) method. In this case the
authors identified Logistic Regression as the most stable and best performing
classifier, and decide to evaluate the ensemble approach varying the quan-
tification methods. They use four quantification methods: Energy Distance
(EDy) [25], Kernel Density Estimation (KDEy) [36], Generalized Probabilis-
tic Adjusted Classify & Count (GPACC) [18], and a newly proposed EMQ-ini
method. The EMQ-ini method is a variant of EMQ [42] that uses the priors

64 Andrea Esuli et al.

from GPACC as the initial priors for the unlabelled set, instead of directly
using the priors from the classifier. Also for T2 the optimisation of each
classifier-quantifier pair in the ensemble is performed jointly.

4 Results

In this section we discuss the results obtained by the participant teams in the
four subtasks we have proposed. The evaluation campaign started on February
15, 2024, with the release of the training sets (L1 . . . L4) and of the development
sets (D1 . . . D4); alongside them, the participant teams were provided with a
dummy submission, a format checker, and the o!cial evaluation script.7 The
unlabelled test sets (U1 . . . U4) were released on May 1, 2024; and runs had to
be submitted by June 15, 2024.

We used Codalab (https://codalab.org/) as the platform for the submis-
sion of runs by the teams; each team could submit up to three runs per subtask.
The o!cial competition can be accessed at.8 In this edition we set up a second
Codalab instance using the same validation set provided to them. The validation
version is available at.9 This second instance allowed teams to have an immedi-
ate evaluation of their methods on validation data, allowing them to check the
correctness of their submissions and the consistence of their evaluations with the
one performed by the o!cial evaluation platform.

The true labels of the unlabelled test sets were released on May 3, 2024, after
the submission period was over and the o!cial results had been announced to
the participants. In the rest of this section we discuss the results that the partic-
ipants’ systems and the baseline systems have obtained in the Binary Quantifi-
cation task (T1, Section 4.1), the Single-Label Multi-Class Quantification task
(T2, Section 4.2), the Ordinal Quantification task (T3, Section 4.3), and the
Covariate Shift task (T4, Section 4.4),

In the sections to come, we use the following notational conventions for the
tables displaying the results of the participant teams. The first column corre-
sponds to the o!cial measure used for ranking the participant systems (RAE in
T1, T2, and T4; NMD in T3) while the second column displays the secondary
evaluation measure (AE in T1, T2, and T4; Macro-NMD in T3). Results are
averaged across the 5,000 test samples. Boldface indicates the best method for
a given evaluation measure. Superscripts † and ‡ denote the methods (if any)
whose scores are not statistically significantly di”erent from the best one ac-
cording to the Wilcoxon signed-rank test at di”erent confidence levels: symbol
† indicates 0.001 < p-value < 0.05 while symbol ‡ indicates 0.05 ↔ p-value. The
absence of any such symbol indicates p-value ↔ 0.001 (i.e., that the di”erence in
performance between the method and the best one is statistically significant at
a high confidence level). Baseline methods are typeset in italic.

7
https://github.com/HLT-ISTI/LeQua2024_scripts/tree/main

8
https://codalab.lisn.upsaclay.fr/competitions/18965

9
https://codalab.lisn.upsaclay.fr/competitions/19100

An Overview of LeQua 2024 65

4.1 Task T1: Binary Quantification under Prior Probability Shift

Rank Run RAE AE

1 UNSW 0.09811 ± 0.27043 0.02063‡± 0.01608
2 KDEy 0.10179‡± 0.30431 0.02043 ± 0.01589

3 Lamarr 0.10653†± 0.31885 0.02128 ± 0.01667
4 DM 0.10699 ± 0.28473 0.02175 ± 0.01669
5 UniOeste 0.10850‡± 0.35492 0.02096†± 0.01648
6 SLD 0.11103‡± 0.36698 0.02113 ± 0.01660
7 PACC 0.13390 ± 0.46333 0.02399 ± 0.01809
8 UniLeiden 0.13917 ± 0.53773 0.02379 ± 0.01818
9 ACC 0.16439 ± 0.60318 0.02644 ± 0.02037
10 CC 0.97742 ± 3.91905 0.07955 ± 0.04816
11 PCC 1.26562 ± 5.11243 0.10175 ± 0.05985
12 TeamCUFE 2.53730 ± 10.82087 0.22472 ± 0.15197

Table 3: Results of Task T1, binary quantification under prior probability shift.

Table 3 shows the results of the participating teams in T1. The team obtaining
the best averaged result is UNSW. In this task, UNSW used a variant of an
ensemble method called MC-SQ that combines the output of di”erent classifiers
with one aggregative quantifier (see Section 3). This method is not only the
one scoring the lowest RAE, but also the one showcasing the smallest variance
of the lot. Notwithstanding this, the di”erences in performance with respect to
four other methods (KDEy, Lamarr, UniOeste, and SLD) are not statistically
significant according to the statistical test.

In terms of AE, the best performing method is KDEy. This may come as
a surprise, as KDEy was originally proposed with multiclass problems in mind,
and is not expected to bring to bear any significant advantage in the binary case.
Be it as it may, the di”erences in performance with respect to UNSW (MC-SL)
and UniOeste are not significant.

The four CC-variants are relegated to the bottom half of the results table.
The UniLeiden’s system performance is positioned between that of the baseline
methods PACC and ACC in the results table. This is significant, since UniLeiden
proposes a variant of the Medium Sweep algorithm, which in turn is an improved
variant of ACC. Despite the improvement brought to bear by UniLeiden, the
original PACC still seems to perform slightly better in terms of RAE, while
at the same time displaying a smaller variance. As a final remark, the (bad)
performances of the “unadjusted” variants (CC and PCC) are not comparable
with the rest of the methods in the table, yielding errors close to one order of
magnitude higher. TeamCUFE’s system produces even higher errors, both for
RAE and AE, and with much higher variation.

66 Andrea Esuli et al.

Fig. 1: Diagonal plot for T1.

Figure 1 shows a so-called “diagonal plot” which displays the estimated
prevalence value for the positive class (y-axis) as a function of the true posi-
tive prevalence (x-axis). The plot is termed “diagonal” because the behaviour of
an ideal quantifier is represented by the diagonal line from (0,0) to (1,1). This
plot reveals that most of the methods perform fairly well at predicting the pos-
itive class prevalence. Exceptions are CC and PCC. The reason for this is that
neither of these methods applies any correction to the raw counts obtained from
a hard or soft classifier, respectively. Interestingly, CC and PCC do not intersect
the diagonal at the point where the true prevalence equals the training preva-
lence (marked on the plot as a cyan dot), which would be expected since CC and
PCC are known to be biased towards the training prevalence. The reason for this
deviation is that the classifier’s hyperparameters were optimized through model
selection on the validation samples, which are designed to exhibit significant
variations in prior probability shifts. As a result, the best hyperparameters are
those that manage to shift the classifier’s bias from the training prevalence to
0.5, which yields a lower averaged RAE across all validation samples. The most
noisy output is attained by TeamCUFE. Unfortunately, we do not have details
on how this method performs.

Figure 2 shows a di”erent plot that we may dub the “error-by-shift” plot,
in which the error (here displayed as log(RAE) to better highlight performance

An Overview of LeQua 2024 67

Fig. 2: Error-by-shift plot for T1.

di”erences) is shown as a function of the amount of PPS of the test samples
with respect to the training sample. Here, we measure PPS in terms of the
signed di”erence between the training positive prevalence and the test positive
prevalence. The greened region represents the density of experiments carried
out, which is close to uniform. Something which seems evident from the plot is
that most of the methods yield very small errors across the majority of the shift
spectrum, with higher errors concentrated at the extremes of the spectrum, i.e.,
where all instances are either positive or negative. CC, PCC, and TeamCUFE
achieve the smallest error at around 0.25 of shift, rather than at 0 (no shift), as
one might expect. This aligns with the previous observation that, through model
selection, these methods have shifted their inherent biases from the training
prevalence (0.78) to 0.5 in order to minimize the validation error. Consequently,
these methods happen to be biased towards the point 0.78-0.5 ↗ 0.25, where
they obtain the best results. For the rest of the methods, the di”erences in
performance are very thin.

4.2 Task T2: Single-Label Multiclass Quantification under Prior

Probability Shift

Table 4 shows the results obtained by the participating teams in T2. UniOvie-
do(Team1) obtained the best RAE score in the multiclass quantification problem
under prior probability shift. This score is not only the smallest, but also the one
displaying the smallest variation. The Wilcoxon test reveals this score is statis-
tically significantly better than the rest of the methods with high confidence. In
terms of AE, instead, the UNSW team obtained the best averaged score, which
is statistically significantly better than the rest of the methods. In this case,
the variant employed by the UNSW team corresponds to the a configuration
SC-MQ, i.e., to one in which there is only one classifier generating predictions
for an ensemble of aggregation methods (see Section 3).

68 Andrea Esuli et al.

Rank Run RAE AE

1 UniOviedo(Team1) 0.92173 ± 0.70476 0.02097 ± 0.00566
2 Lamarr 1.03016 ± 0.84658 0.01412 ± 0.00322
3 UNSW 1.07856 ± 0.96585 0.01274 ± 0.00353

4 SLD 1.16158 ± 0.99066 0.01343 ± 0.00346
5 PACC 1.19418 ± 1.13479 0.01552 ± 0.00424
6 KDEy 1.20166 ± 1.05091 0.01367 ± 0.00367
7 DM 1.27189 ± 1.09683 0.01578 ± 0.00405
8 ACC 1.34787 ± 1.16063 0.01640 ± 0.00427
9 CC 2.30963 ± 1.38323 0.01660 ± 0.00310
10 PCC 2.67505 ± 1.60472 0.01931 ± 0.00337
11 TeamCUFE 4.02872 ± 2.12809 0.02587 ± 0.00334

Table 4: Results of Task T2, single-label multiclass quantification under prior
probability shift.

Fig. 3: Error-by-shift plot for T2.

Figure 3 displays the “error-by-shift” plot of T2. In this case, we measure the
amount of shift in terms of absolute error (since the signed di”erence we used in
Figure 2 is only defined in the binary case). This plot reveals some interesting
facts. First, that most methods degrade their performance at increasing levels
of PPS. UniOviedo(Team1) seems to be the most robust in this respect, though.
Second, the performance of all methods seems erratic at very high and (specially)
very smaller amounts of PPS. However, the density of experiments (greened
background) tells us that the number of experiments involved in such cases is
very small, which explains the higher variability. This plot also reveals that the
distribution of the “amount of shift” generated via APP is close to normal;
something that was already echoed in previous research [38].

An Overview of LeQua 2024 69

Rank Run NMD Macro-NMD

1 UniOviedo(Team1) 0.06438 ± 0.04773 0.08007‡± 0.02397
2 Lamarr 0.06585 ± 0.04706 0.07878 ± 0.02038

3 PCC 0.06680 ± 0.05069 0.09004‡± 0.03532
4 KDEy 0.06904 ± 0.04982 0.08297‡± 0.01993
5 UniOviedo(Team2) 0.07212 ± 0.05310 0.08771‡± 0.02564
6 CC 0.07974 ± 0.04760 0.08820‡± 0.01524
7 TeamCUFE 0.10726 ± 0.07755 0.18647‡± 0.11300
8 DM 0.10939 ± 0.06160 0.11445‡± 0.01200
9 SLD 0.11107 ± 0.06903 0.10947‡± 0.01220
10 ACC 0.11944 ± 0.06496 0.12473‡± 0.01498
11 PACC 0.12363 ± 0.06522 0.12830‡± 0.01189

Table 5: Results of Task T3, ordinal quantification under prior probability shift.

4.3 Task T3: Ordinal Quantification under Prior Probability Shift

Table 5 shows the results of the participating teams in T3. Also in this case,
UniOviedo(Team1) achieved the best result for the o!cial evaluation metric,
which in this case is NMD since this is an ordinal problem. The score obtained
by UniOviedo(Team1) is statistically significantly better than the rest of the par-
ticipating systems. However, in terms of Macro-NMD, the Lamarr team achieved
the best result. Nevertheless, according to the Wilcoxon test, no method appears
to be statistically significantly di”erent in terms of average rank performance.

It was expected that UniOviedo(Team1) and Lamarr would perform well in
this task, as both teams implemented solutions that take into account the ordi-
nal nature of the data. For example, UniOviedo(Team1) directly optimised for
the evaluation loss, while Lamarr explicitly regularised their solutions towards a
uniform distribution, which ultimately favours smooth solutions. What was un-
expected, however, was the seemingly good performance of PCC, a method that
not only disregards the ordinal nature of the data but also does not attempt
to counter any shift in the priors. This is a clear indication that the samples
provided may be characterized by a lower degree of prior probability shift com-
pared to tasks T1 and T2. The reason why, is that the samples are “natural”
(generated via NPP), i.e., are not generated via artificially (via APP) imposing
widely varying degrees of prior probability shift, as was instead the case for T1
and T2.

Figure 4 displays the averaged performance of the top-5 methods as a function
of di”erent levels of “jaggedness” of the tested distributions. More precisely, we
compute the jaggedness of a distribution pω as:

J(pω) =
1

2

n→1∑

i=2

(↓pω(yi→1) + 2pω(yi)↓ pω(yi+1))
2 (4)

70 Andrea Esuli et al.

Fig. 4: Quantification performance as a function of the distribution “jaggedness”.

The plot reveals that all methods degrade their performance as the distributions
become “jaggy”. However, UniOviedo(Team1), Lamarr, and UniOviedo(Team2)
seem to behave more robustly across the entire spectrum. That Lamarr and
UniOviedo(Team2) performed well in T3 was to be expected, as both methods
have been designed with ordinal considerations in mind. Also, UniOviedo(Team1)
performed well in T3, despite the fact that this method is not specifically suited
for ordinal data. Notwithstanding this, note that UniOviedo(Team1) is trained
using the validation data as well, which inherently showcase many plausible
patterns of ordinal distributions, so one might expect that this method learns
to handle the ordinality which resides in the distributions. In contrast, other
methods such as PCC and KDEy, which are completely agnostic to the ordinal
nature of the data, tend to perform worse in di!cult scenarios. The fact that,
notwithstanding this, PCC and KDEy rank second and third in the table is a
consequence of the fact that most of the samples display low levels of jaggedness.

4.4 Task T4: Binary Quantification under Covariate Shift

Table 6 reports the results obtained for T4. In this case, the Lamarr team scored
the best result in terms of the o!cial evaluation measure (RAE), while SLD
obtained the best AE. Somehow surprisingly, though, the RAE score obtained by
UniOviedo(Team1) is not statistically significantly di”erent from the Lamarr’s
score, even though UniOviedo(Team1) ranked 5th. This may be explained by
the variance of their system, which is markedly higher than that of methods
SLD, DM, and KDEy, which occupy the 2nd, 3rd, and 4th positions in the rank,
respectively.

As recalled from Section 2.8, task T4 is not only characterized by covariate
shift but also by a shift in the priors. It is thus interesting to disentangle the

An Overview of LeQua 2024 71

Rank Run RAE AE

1 Lamarr 0.10930 ± 0.33394 0.02191 ± 0.01765
2 SLD 0.11497 ± 0.39872 0.02013 ± 0.01594

3 DM 0.11559 ± 0.32287 0.02341 ± 0.01853
4 KDEy 0.11804 ± 0.32916 0.02380 ± 0.01865
5 UniOviedo(Team1) 0.12975‡± 0.42556 0.02122 ± 0.01617
6 ACC 0.26187 ± 1.09686 0.03054 ± 0.02454
7 PACC 0.28918 ± 1.33046 0.03078 ± 0.02480
8 CC 1.11975 ± 4.33704 0.08292 ± 0.04915
9 PCC 1.45553 ± 5.63934 0.10735 ± 0.06316
10 TeamCUFE 2.49902 ± 9.93390 0.23017 ± 0.16531

Table 6: Results of Task T4, binary quantification under covariate shift.

systems’ performance in terms of both types of shifts, separately. Figure 5 dis-
plays the performance of the methods (on logarithmic scale) as a function of
the amount of prior shift. The trends we observe are, by and large, in line with
those of T1. Figure 6 instead displays the distribution of the errors for the top-5
methods as a function of the prevalence of the Books domain in the test sam-
ples, therefore e”ectively reflecting the amount of covariate shift with respect
to the training distribution. This plot shows a weak tendency to improve as the
prevalence of Books in the test samples increases, thereby approximating the
training mixture (made of 90% Books and 10% Electronics) and reducing the
amount of covariate shift. This tendency is more evident for Lamarr, the best
performer system for this task. One possible reason why the covariate shift has a
weak e”ect on the results may be that the embeddings were generated using the
ELECTRA-Small model [10], which is specifically trained to capture sentiment
polarity, rather than topical information, which may therefore be obscured.

Interestingly, PCC has obtained a poor score. This is relevant since this
method is considered to behave robustly in the presence of covariate shift. How-
ever, it is also known that its performance degrades when some shift in the
priors is also at play [24], as is the case for T4. Figure 7 compares the perfor-
mance of PCC against Lamarr, the top performer in Table 6, proving that PCC’s
performance in terms of RAE is out of scale.

Figure 8 reports the diagonal plot for T4. Interestingly enough, most methods
seem to perform very well notwithstanding the fact that the underlying distribu-
tions are a”ected by covariate shift as well. As witnessed for T1, CC, PCC, and
TeamCUFE struggle to obtain good predictions for the entire spectrum, since
these methods seem to be strongly biased toward the center of the distribution.

72 Andrea Esuli et al.

Fig. 5: Error-by-shift plot for T4.

5 Final remarks

In this edition of LeQua, we have observed several tendencies worth remark-
ing. First, that the “symmetric approach” adopted by UniOviedo(Team1) shows
promising performance across many di”erent scenarios and involving di”erently
characterised types of dataset shift. This symmetric approach regards the prob-
lem as a regression one, in which both the training instances and the test in-
stances are composed by bags of individual datapoints. Such an approach thus
requires many bags, each labelled with its class prevalence values. The team
used (among other things) the validation samples otherwise provided for model
selection. Given that such samples were representative of the type of shift at play
in each task, the model was able to learn the particularities of each problem.
UniOviedo(Team1) thus leveraged more information during the training phase
than the competitors; however, this strategy is not unfair, as the validation sam-
ples were made available to all participation teams. Yet another di”erentiating
aspect of this method has to do with its ability to optimise specific loss func-
tions. This capability allowed UniOviedo(Team1) to tune their models for the
very same evaluation measures used to rank the participating systems. Perhaps
the most important di”erentiating aspect of this method is the fact that no
classifier is involved. This appears promising from the point of view of the Vap-
nik’s principle (outlined in Section 1), since the method is trained to solve the
quantification problem directly.

One notable observation is that the binary quantification problem (exempli-
fied by T1) is almost a “solved problem”, with most methods performing remark-
ably well in this case. In contrast, the multiclass quantification problem remains
significantly more challenging, leaving substantial room for improvement.

Compared to the previous edition, we observed many methods clearly out-
performing SLD. This is noteworthy, since SLD is widely considered a very hard-
to-beat system [1,37,38] and was one of the top-performing methods in the past
LeQua 2022 edition.

An Overview of LeQua 2024 73

Fig. 6: Errors of the top-5 methods at di”erent proportions of book and elec-
tronics domains.

Fig. 7: A comparison of the errors produced by PCC and the top performer
method Lamarr, at di”erent proportions of book and electronics domains.

74 Andrea Esuli et al.

Fig. 8: Diagonal plot for T4.

Another important point concerns the di!culty in simulating meaningful
levels of prior shift in ordinal problems. Plausible ordinal distributions impose
certain constraints (e.g., smoothing requirements) that conflict with protocols
designed to artificially alter them. In future editions, we plan to explore more
sophisticated mechanisms to challenge participant systems with more abrupt
shifting conditions in ordinal problems.

Looking back, we believe that using a sentiment-specific feature extractor
reduced the impact of the covariate-shift e”ect introduced in task T4. For fu-
ture editions, we plan to incorporate alternative representation mechanisms that
better account for the controlled mixture of domains.

To conclude, we believe that LeQua 2024 has provided participating teams
with the opportunity to stress-test their cutting-edge systems in a controlled
setting, o”ering valuable insights to the community.

Acknowledgments

This work has been supported by the SoBigData++ project, funded by the Eu-
ropean Commission (Grant 871042) under the H2020 Programme INFRAIA-
2019-1, and by the SoBigData.it and FAIR projects funded by the European
Commission under the NextGenerationEU program. This work has also been
funded by the QuaDaSh project (P2022TB5JF) “Finanziato dall’Unione euro-
pea —Next Generation EU, Missione 4 Componente 2 CUP B53D23026250001”.

An Overview of LeQua 2024 75

The authors’ opinions do not necessarily reflect those of the European Commis-
sion.

References

1. Alexandari, A., Kundaje, A., Shrikumar, A.: Maximum likelihood with bias-
corrected calibration is hard-to-beat at label shift adaptation. In: Proceedings of
the 37th International Conference on Machine Learning (ICML 2020). pp. 222–232.
Virtual Event (2020)

2. Bella, A., Ferri, C., Hernández-Orallo, J., Ramı́rez-Quintana, M.J.: Quantifica-
tion via probability estimators. In: Proceedings of the 11th IEEE International
Conference on Data Mining (ICDM 2010). pp. 737–742. Sydney, AU (2010).
https://doi.org/10.1109/icdm.2010.75

3. Bunse, M., Moreo, A., Sebastiani, F., Senz, M.: Regularization-based methods for
ordinal quantification. arXiv:2310.09210 [cs.LG] (2023)

4. Bunse, M., Morik, K.: Unification of algorithms for quantification and unfolding.
In: Proceedings of the 2nd International Workshop on Learning to Quantify (LQ
2022). pp. 1–10. Grenoble, IT (2022)

5. Card, D., Smith, N.A.: The importance of calibration for estimating proportions
from annotations. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics (HLT-NAACL 2018).
pp. 1636–1646. New Orleans, US (2018). https://doi.org/10.18653/v1/n18-1148

6. Castaño, A., Alonso, J., González, P., Pérez, P., del Coz, J.J.: QuantificationLib: A
python library for quantification and prevalence estimation. SoftwareX 26, 101728
(2024)

7. Castaño, A., Alonso, J., González, P., del Coz, J.J.: An equivalence analysis of
binary quantification methods. In: Proceedings of the 37th AAAI Conference on
Artificial Intelligence (AAAI-23). pp. 6944–6952. Washington, US (2023)

8. Castaño, A., González, P., González, J.A., del Coz, J.J.: Matching distribu-
tions algorithms based on the Earth Mover’s Distance for ordinal quantifica-
tion. IEEE Transactions On Neural Networks and Learning Systems (2022).
https://doi.org/10.1109/TNNLS.2022.3179355, forthcoming

9. Castaño, A., González, P., González, J.A., del Coz, J.J.: Matching distributions
algorithms based on the Earth mover’s distance for ordinal quantification. IEEE
Transactions on Neural Networks and Learning Systems 35(1), 1050–1061 (2024).
https://doi.org/10.1109/TNNLS.2022.3179355

10. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: ELECTRA: Pre-training text
encoders as discriminators rather than generators. In: Proceedings of the 8th In-
ternational Conference on Learning Representations (ICLR 2020). Addis Ababa,
ET (2020), https://openreview.net/pdf?id=r1xMH1BtvB

11. Donyavi, Z., Li, F., Batista, G.: Ensemble Learning to Quantify: The CSE UNSW
Team at LeQua 2024. In: Working Notes of the Learning to Quantify: Methods and
Applications (LQ 2024) workshop, co-located at the European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD 2024), Vilnius, Lituania. Vilnius, LI (2024)

12. Donyavi, Z., Serapio, A., Batista, G.: MC-SQ: A highly accurate ensemble for
multi-class quantification. In: Proceedings of the 23rd SIAM International Con-
ference on Data Mining (SDM 2023). pp. 622–630. Minneapolis, US (2023).
https://doi.org/10.1137/1.9781611977653.ch70

76 Andrea Esuli et al.

13. Dussap, B., Blanchard, G., Chérief-Abdellatif, B.: Label shift quantification with
robustness guarantees via distribution feature matching. In: Proceedings of the
34th European Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML / PKDD 2023). pp. 69–85. Torino, IT
(2023). https://doi.org/10.1007/978-3-031-43424-2 5

14. Esuli, A., Fabris, A., Moreo, A., Sebastiani, F.: Learning to quantify. Springer
Nature, Cham, CH (2023). https://doi.org/10.1007/978-3-031-20467-8

15. Esuli, A., Molinari, A., Sebastiani, F.: A critical reassessment of the
Saerens-Latinne-Decaestecker algorithm for posterior probability adjustment.
ACM Transactions on Information Systems 39(2), Article 19 (2021).
https://doi.org/10.1145/3433164

16. Esuli, A., Moreo, A., Sebastiani, F., Sperduti, G.: A concise overview of LeQua
2022: Learning to quantify. In: Proceedings of the 13th International Confer-
ence of the CLEF Association (CLEF 2022). pp. 362–381. Bologna, IT (2022).
https://doi.org/10.1007/978-3-031-13643-6 23

17. Esuli, A., Moreo, A., Sebastiani, F., Sperduti, G.: A detailed overview of LeQua
2022: Learning to quantify. In: Working Notes of the 13th Conference and Labs of
the Evaluation Forum (CLEF 2022). Bologna, IT (2022)

18. Firat, A.: Unified framework for quantification (2016), arXiv:1606.00868v1 [cs.LG]
2 Jun 2016

19. Forman, G.: Counting positives accurately despite inaccurate classification. In:
Proceedings of the 16th European Conference on Machine Learning (ECML 2005).
pp. 564–575. Porto, PT (2005). https://doi.org/10.1007/11564096 55

20. Forman, G.: BNS feature scaling: An improved representation over TF.IDF for
SVM text classification. In: Proceedings of the 17th ACM Conference on Infor-
mation and Knowledge Management (CIKM 2008). pp. 263–270. Napa Valley, US
(2008)

21. Forman, G.: Quantifying counts and costs via classification. Data Mining and
Knowledge Discovery 17(2), 164–206 (2008). https://doi.org/10.1007/s10618-008-
0097-y

22. González, P., Castaño, A., Chawla, N.V., del Coz, J.J.: A review on
quantification learning. ACM Computing Surveys 50(5), 74:1–74:40 (2017).
https://doi.org/10.1145/3117807

23. González, P., Moreo, A., Sebastiani, F.: Binary quantification and dataset shift: An
experimental investigation. Data Mining and Knowledge Discovery 38(4), 1670–
1712 (2024). https://doi.org/10.1007/s10618-024-01014-1

24. González, P., Moreo, A., Sebastiani, F.: Binary quantification and dataset shift:
an experimental investigation. Data Mining and Knowledge Discovery pp. 1–43
(2024)

25. Kawakubo, H., Du Plessis, M.C., Sugiyama, M.: Computationally e”cient class-
prior estimation under class balance change using energy distance. IEICE Trans-
actions on Information and Systems 99, 176–186 (2016)

26. Kloos, K.: UniLeiden at LeQua2024: Evaluating Continuous Sweep and Compari-
son Using Underlying Classifiers. In: Working Notes of the Learning to Quantify:
Methods and Applications (LQ 2024) workshop, co-located at the European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD 2024), Vilnius, Lituania. Vilnius, LI (2024)

27. Kloos, K., Karch, J.D., Meertens, Q.A., de Rooij, M.: Continuous Sweep: An im-
proved, binary quantifier. arXiv:2308.08387 [stat.ML] (2023)

An Overview of LeQua 2024 77

28. Lotz, T., Bunse, M.: Lamarr at LeQua2024: Regularized Soft-Max Likelihood
Maximization. In: Working Notes of the Learning to Quantify: Methods and Ap-
plications (LQ 2024) workshop, co-located at the European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD 2024), Vilnius, Lituania. Vilnius, LI (2024)

29. Luth, L., Daniel, O., Gomes, G., Maletzke, A.: UniOeste at LeQua 2024: Com-
bining the top-ranked quantifiers. In: Working Notes of the Learning to Quantify:
Methods and Applications (LQ 2024) workshop, co-located at the European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML-PKDD 2024), Vilnius, Lituania. Vilnius, LI (2024)

30. Maletzke, A., Moreira dos Reis, D., Cherman, E., Batista, G.: DyS: A framework
for mixture models in quantification. In: Proceedings of the 33rd AAAI Confer-
ence on Artificial Intelligence (AAAI 2019). pp. 4552–4560. Honolulu, US (2019).
https://doi.org/10.1609/aaai.v33i01.33014552

31. Moreno-Torres, J.G., Raeder, T., Aláız-Rodŕıguez, R., Chawla, N.V., Herrera, F.:
A unifying view on dataset shift in classification. Pattern Recognition 45(1), 521–
530 (2012). https://doi.org/10.1016/j.patcog.2011.06.019

32. Moreo, A., Esuli, A., Sebastiani, F.: QuaPy: A Python-based framework for
quantification. In: Proceedings of the 30th ACM International Conference on
Knowledge Management (CIKM 2021). pp. 4534–4543. Gold Coast, AU (2021).
https://doi.org/10.1145/3459637.3482015

33. Moreo, A., Francisco, M., Sebastiani, F.: Multi-label quantification. ACM
Transactions on Knowledge Discovery and Data 18(1), Article 4 (2023).
https://doi.org/10.1145/3606264

34. Moreo, A., González, P., del Coz, J.J.: Kernel density estima-
tion for multiclass quantification. arXiv:2401.00490 [cs.LG] (2023).
https://doi.org/10.48550/arXiv.2401.00490

35. Moreo, A., González, P., del Coz, J.J.: Kernel density estimation for multiclass
quantification (2024), https://arxiv.org/abs/2401.00490

36. Moreo, A., González, P., del Coz, J.J.: Kernel density estimation for multiclass
quantification. Machine Learning (2024), forthcoming

37. Moreo, A., Sebastiani, F.: Re-assessing the “classify and count” quantification
method. In: Proceedings of the 43rd European Conference on Information Retrieval
(ECIR 2021). vol. II, pp. 75–91. Lucca, IT (2021). https://doi.org/10.1007/978-3-
030-72240-1 6

38. Moreo, A., Sebastiani, F.: Tweet sentiment quantification: An ex-
perimental re-evaluation. PLOS ONE 17(9), 1–23 (September 2022).
https://doi.org/10.1371/journal.pone.0263449

39. Pennington, J., Socher, R., Manning, C.D.: Glove: Global vectors for word repre-
sentation. In: Proceedings of the 12th Conference on Empirical Methods in Natural
Language Processing (EMNLP 2014). pp. 1532–1543. Doha, QA (2014)

40. Pérez-Mon, O., González, P.: UniOvi Team at LeQua 2024: Quantification via
Gaussian Latent Space Representations. In: Working Notes of the Learning to
Quantify: Methods and Applications (LQ 2024) workshop, co-located at the Euro-
pean Conference on Machine Learning and Principles and Practice of Knowledge
Discovery in Databases (ECML-PKDD 2024), Vilnius, Lituania. Vilnius, LI (2024)

41. Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., Lawrence, N.D. (eds.):
Dataset shift in machine learning. The MIT Press, Cambridge, US (2009).
https://doi.org/10.7551/mitpress/9780262170055.001.0001

42. Saerens, M., Decaestecker, C.: Decision-making with unknown priors in supervised
classification (2010), unpublished manuscript

78 Andrea Esuli et al.

43. Saerens, M., Latinne, P., Decaestecker, C.: Adjusting the outputs of a classifier to
new a priori probabilities: A simple procedure. Neural Computation 14(1), 21–41
(2002). https://doi.org/10.1162/089976602753284446

44. Sakai, T.: Comparing two binned probability distributions for information access
evaluation. In: Proceedings of the 41st International ACM Conference on Research
and Development in Information Retrieval (SIGIR 2018). pp. 1073–1076. Ann Ar-
bor, US (2018). https://doi.org/10.1145/3209978.3210073

45. Schumacher, T., Strohmaier, M., Lemmerich, F.: A comparative evaluation of quan-
tification methods. arXiv preprint arXiv:2103.03223 (2021)

46. Sebastiani, F.: Evaluation measures for quantification: An axiomatic
approach. Information Retrieval Journal 23(3), 255–288 (2020).
https://doi.org/10.1007/s10791-019-09363-y

47. Smith, N.A., Tromble, R.W.: Sampling uniformly from the unit simplex. Tech. rep.,
Johns Hopkins University (2004), https://www.cs.cmu.edu/~nasmith/papers/

smith+tromble.tr04.pdf

48. Tasche, D.: Class prior estimation under covariate shift: No problem? In: Proceed-
ings of the 2nd International Workshop on Learning to Quantify (LQ 2022). pp.
11–26. Grenoble, IT (2022)

49. Vapnik, V.: Statistical learning theory. Wiley, New York, US (1998)
50. Werman, M., Peleg, S., Rosenfeld, A.: A distance metric for multidimensional his-

tograms. Computer Vision, Graphics, and Image Processing 32, 328–336 (1985)

UniLeiden at LeQua2024: Evaluating Continuous
Sweep and Comparison Using Underlying

Classifiers

Kevin Kloos

University of Leiden, NL

Abstract. We compared the continuous sweep quantifier with median
sweep, SLD, and DyS using Task T1 of the LeQua2024 competition data.
We fitted 100 di!erent underlying support vector machines and evaluated
all quantifiers on all models. Continuous sweep is outperformed by SLD
and DyS if a well-performing underlying classifier exists. Using worse
quantifiers, continuous sweep and median sweep appeared to be more
stable than DyS and SLD. We compared these findings with existing
results in quantification literature.

1 Introduction

Quantification Learning is a task that is focused on predicting the prevalence
of a data set rather than individually labelling each observation [1, 2]. In earlier
years, quantification has been a side product of classification, but over the last
decades, quantification learning has been developed to a standalone field with
sophisticated tasks and methods. One of those tasks are the LeQua competitions
which are designed to evaluate and compare quantifiers with each other. The
LeQua competitions contains various tasks regarding quantification learning [3].
In this paper, we focus on task T1 of the LeQua2024 competition. This task
concerns binary quantifiers from which the data is a!ected by prior-probability
shift.

In this paper, we compare the continuous sweep quantifier with median
sweep, SLD, and DyS. All quantifiers use a support vector machine with a radial
basis function as an underlying classifier. We not only investigate the raw perfor-
mance of the quantifiers, but also investigate the relationship with the underlying
classifiers. We finalize the paper with a discussion about the competition and a
generalization to other studies.

2 Methods

In this study, we compare our four quantifiers. These four quantifiers need an
underlying classifier to compute probabilities for each observation. In this sec-
tion, we explain how we computed the underlying classifier and elaborate on the

80 Kevin Kloos

four quantifiers. Extra emphasis is put on the Continuous Sweep quantifier, be-
cause the author of this paper is one of the developers of Continuous Sweep and
it is the most unknown quantifier out of the four. Moreover, we submitted the
prevalences extracted from Continuous Sweep to the LeQua2024 competition.

Underlying classifier The underlying classifier of all quantifiers is a support
vector machine using a radial basis function. Using the kernlab package sup-
ported by the Tidymodels library [4], we can tune this support vector machine
with two hyperparameters: the cost (C) and the radial basis function sigma (ω).
Moreover, the data is preprocessed by normalizing all predictor variables. A max
entropy grid is used to find 100 pairs of hyperparameters that optimally cover
the hyperparameterspace. We therefore fit 100 SVMs with di!erent hyperpa-
rameters. Using the SVM, we can predict the probabilties of observations that
belong to the positive class. With 5-fold cross validation, we also estimate the
probabilties of all observations in the training data, which will be used to fit the
quantifiers.

Median Sweep (MS) Median sweep is an ensemble quantifier in the group
Classify, Count, and Correct [5]. First, we use the SVM to compute probabil-
ities of all observations in the test data. Accordingly, we compute an adjusted
count estimate for every probability that occurs in the test data. The adjusted
count estimates are computed using true and false positive rate estimated by the
cross validated probabilities from the training data. Consequently, we discard
unreliable estimates, that is, every adjusted count estimate where the di!erence
between the true and false positive rates are smaller than 0.25. Finally, we com-
pute the median of the remaining adjusted count estimates as our median sweep
prevalence estimate.

Continuous Sweep (CS) Continuous sweep is a quantifier that is similar to
median sweep [6]. More details of Continuous Sweep can be found in [6], but
we provide a short explanation of the method. Continuous sweep and median
sweep are di!erent in two characteristics. First, continuous sweep uses continuous
functions to estimate the true and false positive rates. In this task, we used the
kernel cumulative density function from R’s ks package to compute the true
and false positive rates with the cross-validated training data. The continuous
functions of the true and false positive functions enabled us to integrate the
adjusted count estimates with respect to the estimated probabilities. Therefore,
the second change is that we compute the mean of all adjusted count estimates
using integration, instead of computing the median. Moreover, we were able to
improve the procedure of discarding unreliable adjusted count estimates. We
derived derivations for the bias and variance of continuous sweep which enabled
us to optimize the value of the minimal di!erence between true and false positive
rates (i.e., pω) that an adjusted count estimate is determined as ”reliable”. The
reliable prevalence estimates are located between εl and εr. The final continuous

UniLeiden at LeQua2024 81

sweep estimate is the mean area under the curve of the adjusted count function
between εl and εr.

SLD The SLD algorithm is a expectation maximization approach to the quan-
tification task [7]. The prevalence of the training data is used as a starting point
to update the test prevalence iteratively by an optimal Bayes classifier until con-
vergence is reached. The stopping criterium is a prevalence di!erence of 0.0001
between two updates or a maximum of 1000 iterations.

DyS The DyS algorithm is algorithm that matches histograms to find the preva-
lence of a test set [8]. First, the cross validated probabilities of the training set
are used to construct histograms of the probabilities in the positive and negative
class. Moreover, the probabilities of the test set are used to make a histogram for
the test data. Using a tenary search, we aim to find the optimal mixture between
the positive and negative class probabilities to match the test histogram as good
as possible. The measure we used to describe the di!erence between histogram
is the hellinger distance. Moreover, default values of 8 bins are used to construct
the histograms and a the stopping criterium is a prevalence di!erence of 0.0001
between two updates.

3 Results

We fitted 100 di!erent SVM-RBF models with di!erent hyperparameters using
a max entropy grid. Out of these 100 models, 76 converged. We compared the
performance of the four quantifiers with 1) their best MAE overall, and 2) using
the model with the lowest ROC-AUC. From Table 1, we see that SLD has the
lowest MAE out of the four models in the two scenarios. Moreover, the di!erences
between the minimum MAE with the MAE of the model with the lowest ROC-
AUC are small across the quantifiers.

We also compared the performance of the classifiers against their quantifi-
cation performance, both within as between quantifiers. For all 76 converged
models, we evaluated the ROC-AUC of the classifier against the cross-validated
probabilities from the training data and we computed the MAE of all four quanti-
fiers on each of the models. Two models had a ROC lower than 0.8, which means
that those models perform very bad compared to the other models. Those two
models are excluded from the illustrations. In Figure 1, we see that the best
classifiers are embraced by all quantifiers. SLD and DyS perform better than CS
and MS using the best classifiers. However, these two quantfiers are less stable
if the classifiers perform worse. For a ROC-AUC around [0.90→ 0.92], SLD had
a remarkable drop in performance. Moreover, out of the 76 converged models,
SLD had a MAE lower than 0.05 for 22 models, whereas DyS, MS, and CS
had a MAE lower than 0.05 for 47, 45, and 44 respectively. For classifier with
a low ROC-AUC, CS and MS outperformed SLD and DyS, but the MAE’s re-
spectively are fairly high compared to the good classifiers. Moreover, we extract
from Figure 1 that DyS performed either good or very bad for worse classifiers.

82 Kevin Kloos

Table 1. The MAE of four quantifiers evaluated on 1000 development sets. At the
top, the lowest MAE of every quantifier across all models. At the bottom, the MAE of
every quantifier based on the largest ROC-AUC. The columns of the table denote the
quantifier, the model number, the cost hyperparameter (C), the rbf sigma hyperpa-
rameter (ω), the ROC-AUC metric of the model, and the MAE of the quantifier given
the classifier.

Quantifier Model no. C ω ROC-AUC MAE
Continuous Sweep 77 4.436 3.28→ 10→4 0.9177 0.0241
Median Sweep 74 0.236 3.68→ 10→3 0.9099 0.0267
SLD 77 4.436 3.28→ 10→4 0.9177 0.0205
DyS 77 4.436 3.28→ 10→4 0.9177 0.0223
Continuous Sweep 78 25.1 4.45→ 10→4 0.9198 0.0246
Median Sweep 78 25.1 4.45→ 10→4 0.9198 0.0291
SLD 78 25.1 4.45→ 10→4 0.9198 0.0209
DyS 78 25.1 4.45→ 10→4 0.9198 0.0224

0.0

0.1

0.2

0.3

0.4

0.5

0.80 0.85 0.90 0.95
ROC−AUC

M
AE

quantifier

CS

DyS

MS

SLD

SLD

MS

DyS

0.80 0.85 0.90 0.95

−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5

−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5

−0.2
−0.1

0.0
0.1
0.2
0.3
0.4
0.5

ROC−AUC

D
iff

er
en

ce
 M

AE
 w

ith
 C

S

Fig. 1. Plot that compares the MAE of he four quantifiers against the ROC-AUC. On
the left, we compare the MAE against the ROC-AUC in general for all models. On the
left, we compare the di!erence between the MAE of the displayed quantifier against
Continuous Sweep, where a value higher than zero indicates a higher MAE for the
respective quantifier.

UniLeiden at LeQua2024 83

4 Discussion

Our quantifier, Continuous Sweep, underperforms against good baseline quanti-
fiers like SLD and DyS in the LeQua2024 competition. If a good classifier can be
obtained from the training data, SLD and DyS performed well. Similar results
have been found in the previous LeQua2022 competition, where DyS and SLD
were good baseline classifiers [3]. If the underlying classifier performs worse, the
ensemble methods such as Continuous Sweep and Median Sweep had a lower
performance drop than, and outperformed, SLD and DyS. These findings could
be translated to the elaborative comparison of [9], where median sweep generally
outperformed SLD and DyS for datasets with a binary target variable. These
datasets used were usually much smaller than the datasets of the LeQua com-
petitions. Whereas the LeQua competition contained a training set of 5000 ob-
servations with 1000 development sets containing 250 observations, the datasets
used in [9] were smaller baseline UCI or Kaggle datasets only splitted into a
training and a test set.

In future research, it could be interesting to investigate the performance of
quantifiers when it is di”cult to construct a good (probabilistic) classifier. More-
over, it could be interesting to investigate whether some decision rules could be
developed to choose a suitable quantifier based on the characteristics of an un-
derlying classifier. For example, if one has an excellent classifier, we could safely
apply SLD, whereas a worse classifier might be better used by a quantifier like
continuous sweep. Last, it might also be interesting to investigate the perfor-
mance of direct learners when it is di”cult to construct a good classifier.

References

1. González P, Castaño A, Chawla NV, del Coz JJ. A Review on Quantification
Learning. ACM Computing Surveys. 2017;50(5):74:1-74:40.

2. Esuli A, Fabris A, Moreo A, Sebastiani F. Learning to Quantify. 1st ed. The
Information Retrieval Series. Cham: Springer Nature; 2023.

3. Esuli A, Moreo A, Sebastiani F, Sperduti G. A Detailed Overview of LeQua@ CLEF
2022: Learning to Quantify; 2022. Available from: https://api.semanticscholar.
org/CorpusID:251471941.

4. Kuhn M, Wickham H. Tidymodels: a collection of packages for modeling and
machine learning using tidyverse principles; 2020. Available from: https://www.
tidymodels.org.

5. Forman G. Quantifying Counts and Costs via Classification. Data Mining and
Knowledge Discovery. 2008;17(2):164-206.

6. Kloos K, Karch JD, Meertens QA, de Rooij M. Continuous Sweep: an improved,
binary quantifier; 2023. Available from: https://arxiv.org/abs/2308.08387.

7. Saerens M, Latinne P, Decaestecker C. Adjusting the Outputs of a Classifier to New
a Priori Probabilities: A Simple Procedure. Neural Computation. 2002;14(1):21-41.

8. Maletzke A, dos Reis D, Cherman E, Batista G. DyS: A Framework for Mixture
Models in Quantification. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 33; 2019. p. 4552-60.

9. Schumacher T, Strohmaier M, Lemmerich F. A Comparative Evaluation of Quan-
tification Methods; 2023.

Ensemble Learning to Quantify: The CSE UNSW
Team at LeQua 2024

Zahra Donyavi, Feiyu Li, and Gustavo Batista

University of New South Wales, Sydney, Australia

{z.donyavi, feiyu.li, g.batista}@unsw.edu.au

Abstract. LeQua 2024 is a data challenge to facilitate the compara-

tive evaluation of quantification methods for class-prior estimation, also

known as quantification or learning to quantify. The challenge focuses on

training predictors, termed “quantifiers,” to estimate the relative frequen-

cies of classes within sets of unlabeled data points. Notably, the datasets

are a!ected by class prevalence shifts, exhibiting prevalences in the test

set that di!er from the training set. We propose two ensemble methods,

Multiple Classifiers - Single Quantifier (MC-SQ) and Single Classifier -

Multiple Quantifiers (SC-MQ), for binary and multi-class quantification

tasks. Additionally, we introduce EMQ-ini, a new variation of the Expec-

tation–Maximization algorithm for Quantification (EMQ) method. This

variation uses the predicted target prior from the quantifier Generalized

Probabilistic Adjusted Classify & Count (GPACC) as the initial point of

log-likelihood maximization. We use EMQ-ini as one of the base quan-

tifiers of SC-MQ. Our MC-SQ method ranked first in Mean Relative

Absolute Error (MRAE), the o"cial competition performance measure,

and second in Absolute Error (AE) on the binary quantification task.

Our SC-MQ method ranked third in MRAE and first in AE for the

multi-class quantification task.

Keywords: Prevalence estimation · Target prevalence shift · Quantifi-

cation.

1 Introduction

Quantification learning is used in many real-world scenarios where the objective
is to predict the behavior of groups. It is particularly useful in sentiment analy-
sis, which tracks how overall opinions about products, people, or organizations
change over time [1]. Instead of classifying individual behaviors, quantification
focuses on estimating the distribution of opinions, providing insights into broader
trends in public sentiment.

The simplest quantification approach, known as Classify & Count (CC), di-
rectly applies classification to quantification problems. However, this method
su!ers from systematic bias in which the error increases linearly as we approach
the more skewed class distributions [2]. To address this, researchers have pro-
posed novel quantification methods to provide more accurate estimates of class
distributions in the presence of class prevalence shifts.

Ensemble Learning to Quantify: The CSE UNSW Team at LeQua 2024 85

LeQua 2024 is a competition that challenges participants to evaluate various
techniques for binary, multi-class, and ordinal quantification tasks using real-
world Amazon product review datasets. The challenge encompasses four tasks:

Task T1 evaluates binary quantifiers on data a!ected by prior probability shift
(label shift), akin to Task T1A of LeQua 2022.

Task T2 assesses single-label multi-class quantifiers operating on data points
belonging to one of L > 2 classes, with data a!ected by prior probability
shift, similar to Task T1B of LeQua 2022.

Task T3 new to LeQua 2024, evaluates ordinal quantifiers handling a set of
L > 2 ordered classes, also involving data a!ected by prior probability shifts.

Task T4 another new addition, evaluates binary quantifiers on data a!ected by
covariate shifts.

Our contributions focus on Tasks T1 and T2. For the binary quantification
task T1, we employ Multiple Classifiers - Single Quantifier (MC-SQ) [3], an en-
semble method that achieved the top rank in MRAE. MC-SQ leverages multiple
classifiers combined with a single quantifier. For the multi-class quantification
task T2, we introduce Single Classifier - Multiple Quantifiers (SC-MQ), an en-
semble approach that secured the third rank in MRAE. SC-MQ combines a
single classifier with multiple quantifiers, including our proposed Expectation-
Maximization Quantifier with Initialization Adaptation (EMQ-ini) method.

The performance of our ensemble methods can be attributed to the combi-
nation of multiple classifiers and quantifiers, leveraging the strengths of diverse
models while mitigating individual weaknesses. These ensemble approaches en-
hance overall quantification accuracy. Furthermore, extensive hyperparameter
tuning optimized the performance of each component within the ensembles, con-
tributing to the top-ranking results.

This paper is organized as follows: Section 2 describes the classification and
quantification methods employed in our ensemble approaches, MC-SQ and SC-
MQ. Section 3 details the evaluation process and comprehensive hyperparameter
tuning strategy. Finally, Section 4 concludes our work and presents directions
for future research.

2 Methods

This section describes our proposed ensemble approaches, MC-SQ and SC-MQ,
employed for the binary quantification task (T1) and multi-class quantification
task (T2).

2.1 MC-SQ Approach for T1

For T1, we employ MC-SQ, an ensemble approach that previously achieved the
top rank in T1B for the LeQua 2022 competition, based on our post-competition
experiments [3]. Figure 1 illustrates the MC-SQ architecture, which consists of

86 Z. Donyavi et al.

an ensemble of six pairs of classifiers and quantifiers. We introduce diversity by
varying the base classifiers while keeping the base quantifier fixed. The chosen
quantifier is Distribution y-Similarity (DyS) [4] as it has been recognized as one
of the top-performing quantifiers for binary problems in the comparative study
conducted by [5].

Training
set

Test set

GB

LGBM

SVM

LDA

LR

CB

DyS

DyS

DyS

DyS

DyS

p?LR

p?CB

p?LGBM

p?SVM

p?LDA

p?GB

M
ed

ia
n p?

DyS

Fig. 1. Schematic of the proposed MC-SQ ensemble approach.

Our approach encompasses the following classifiers: Logistic Regression (LR),
Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), Light
Gradient Boosting Machines (LGBM), Gradient Boosting (GB), and CatBoost
(CB). The rationale behind selecting these algorithms stems from their diverse
learning paradigms and their frequent success in various Machine Learning appli-
cations. As initially proposed, MC-SQ [3] also incorporates Random Forest and
Naive Bayes as base classifiers. However, an extensive evaluation of the com-
petition dataset showed that pairing these classifiers with DyS exhibited higher
quantification error rates on the validation data. Consequently, we removed them
from our ensemble and introduced CatBoost to maintain diversity among the
base classifiers while leveraging its strength in quantification tasks.

We conduct comprehensive hyperparameter tuning for each classifier and
quantifier combination to optimise our ensemble approach. This process system-
atically explores the parameters space to identify the configurations that yielded
the best quantification performance on the validation set. Section 3 provides fur-

Ensemble Learning to Quantify: The CSE UNSW Team at LeQua 2024 87

ther details on our methodology and experimental setup, including the compre-
hensive hyperparameter tuning process employed to optimize the performance
of our ensemble approach.

2.2 SC-MQ Approach for T2

For the T2 task, we introduce SC-MQ, an ensemble approach that combines di-
verse quantification algorithms with a single base classifier. We evaluated various
classifiers as potential base classifiers by measuring the quantification error over
the validation set. Our analysis showed that logistic regression (LR), as the base
classifier, coupled with the assessed quantifiers, yielded the lowest quantification
error on the validation set. Consequently, we selected LR as the base classifier for
our ensemble, aiming to optimize overall quantification performance. By fixing
the Single Classifier as Logistic Regression, we aim to minimize the variability
introduced by the classification component. This allows the quantification algo-
rithms to be the primary source of diversity within the ensemble. Figure 2 shows
the architecture of our proposed SC-MQ method.

Training
set

Test set

LR

LR

LR

LR

EDy

KDEy

GPACC

p?EMQ-ini

p?GPACC

p?KDEy

p?EDy
M

ed
ia

n

p?

EMQ-ini

Fig. 2. Schematic of the proposed SC-MQ ensemble approach.

We employ four quantification methods in our experiments: Energy Distance
(EDy) [6], Kernel Density Estimation (KDEy) [7], Generalized Probabilistic Ad-
justed Classify & Count (GPACC) [8], and our newly proposed EMQ-ini. We
select these methods based on our prior knowledge of quantification techniques
and their ability to handle multi-class problems. Each algorithm represents a dis-
tinct approach to quantification. For KDEy, we specifically utilize the Maximum

88 Z. Donyavi et al.

Likelihood (ML) variation, as it showed the best performance for multi-class
datasets among all KDEy variants in the original study [7].

Complementing these established quantifiers, we introduce EMQ-ini, a novel
variation of the EMQ method [9] we are currently working on. EMQ-ini uses
the predicted target priors from GPACC as the initial point of log-likelihood
maximization. This competition provides an opportunity to test our idea and
evaluate the performance of EMQ-ini on the quantification tasks in a real-world
setting. We discuss the EMQ-ini method in detail in the next section.

2.3 EMQ-ini

EMQ-ini is a new quantification method designed to enhance the performance of
traditional EM-based quantifiers. It leverages an initial estimate from GPACC
to provide a more informed starting point for the EM process, improving conver-
gence speed and accuracy, especially in scenarios where class distribution shifts
are significant between the training and target domains.

Alg. 1 provides a detailed description of EMQ-ini. Suppose we have y =
{yi}Li=1 as the set of labels, and x is the unlabelled test set with N instances
sampled from the target domain. EMQ-ini takes three inputs: p̂ini(y), which is
an estimate of the target prevalence from GPACC, used as an initiation for EM;
pt(y), as the class prevalence from a training set; and p̂t(y|x) is the estimate
posterior class probabilities (scores) from a classifier trained on training set
sampled from the source domain.

EMQ-ini updates the scores before applying the EM iterations. This update
is based on the Bayes’ rule, similar to the E step in EMQ. It begins by computing
the prevalence ratio r, which is the element-wise division of prevalence estimate
p̂ini(y) by the training prevalence p̂t(y). This ratio is then used to compute the
scores p̂ini(y|x).

The main iterative process of the EMQ-ini is similar to EMQ and consists of
the following steps:

– E-step: In this step, the algorithm computes the updated posterior probabil-
ities p̂(s)(y|x) for the current iteration s. This is done by adjusting the initial
posterior probabilities p̂ini(y|x) based on the ratio of the current prevalence
estimate p̂(s)(y) to the initial prevalence estimate p̂ini(y), using Bayes’ rule.

– M-step: In this step, the algorithm updates the prevalence estimate p̂(s+1)(y)
for the next iteration s+1. This is done by taking the average of the updated
posterior probabilities p̂(s)(y|x) across all instances in the dataset.

The E-step and M-step are iteratively performed until a stopping condition
is met (e.g., convergence or maximum iterations reached).

After the iterative process, the final prevalence estimate p̂(y) is set to the
last computed prevalence estimate p̂(s)(y).

Ensemble Learning to Quantify: The CSE UNSW Team at LeQua 2024 89

Algorithm 1: EM Quantifier with Initialization Adaptation.
Input: p̂ini(y), pt(y), p̂t(y|x)
Output: p̂(y)

Prevalence ratio: r ←
p̂ini(y)
pt(y)

;

Updated posterior: p̂ini(y|x) ←

[
ri · p̂t(yi|x)∑L

j=1 rj · p̂t(yj |x)
for i ← 1 to L

]
;

State: s ← 0;

Target prevalence estimate in state s: p̂(s)(y) ← p̂ini(y);
while stopping condition = false do

E step: p̂(s)(y|x) ←





p̂(s)(yi)
p̂ini(yi)

· p̂ini(yi|x)

L∑

j=1

p̂(s)(yj)
p̂ini(yj)

· p̂ini(yj |x)
for i ← 1 to L




;

M step: p̂(s+1)(y) ←
1
N

∑

x→x
p̂(s)(y|x);

s ← s+ 1;

p̂(y) ← p̂(s)(y);
return p̂(y);

3 Evaluation

The performance of the proposed methods is evaluated on both the validation
and test sets for Tasks T1 and T2. Tables 1 and 3 present the results in terms
of Mean Absolute Error (MAE) and Mean Relative Absolute Error (MRAE) for
the validation and test sets, respectively.

For the binary quantification task T1, Table 1 compares the performance of
the individual classifiers coupled with the DyS quantifier and the proposed MC-
SQ ensemble method. Among the individual methods, LR-DyS and the MC-SQ
ensemble achieved the best MAE of 0.0206 on both the validation and test sets.
However, MC-SQ outperformed LR-DyS regarding MRAE, achieving the lowest
scores of 0.0869 and 0.0981 on the validation and test sets, respectively.

The parameters for the classifiers and quantifiers used in the T1 task were
selected using grid search and optimization to minimize the MRAE metric. This
process was facilitated by the QuaPy library [10]. Table 2 presents the selected
parameters obtained through this optimization procedure. Notable parameters
include the regularization and gamma parameters for Logistic Regression and
Support Vector Machines and the number of bins (nbins) used by the DyS quan-
tifier, which varied across the di!erent methods. Any other parameters or hy-
perparameters not explicitly mentioned in the parameters table are set to their
respective default values as defined by the implemented methods.

For the multi-class quantification task T2, Table 3 compares the performance
of the proposed SC-MQ ensemble with its individual components: EDy, EMQ-ini,

90 Z. Donyavi et al.

Table 1. Performance comparison of methods on validation and test sets for T1.

Method
Validation set Test set

MAE MRAE MAE MRAE

LR-DyS 0.0206 0.0910 0.0206 0.1024

LDA-DyS 0.0218 0.0987 0.0218 0.1121

SVM-DyS 0.0213 0.1023 0.0217 0.1026

LGBM-DyS 0.0253 0.1034 0.0255 0.1220

GB-DyS 0.0258 0.1052 0.0258 0.1176

CB-DyS 0.0233 0.0954 0.0233 0.1145

MC-SQ 0.0206 0.0869 0.0206 0.0981

Table 2. Classifier and Quantifier selected parameters for T1.

Method Classifier Quantifier

LR-DyS C = 10, class-weight = balanced nbins = 40

LDA-DyS None nbins = 30

SVM-DyS C = 24.1967, gamma = 0.0114 nbins = 30

LGBM-DyS None nbins = 30

GB-DyS None nbins = 16

CB-DyS Depth = 2, learning_rate = 0.1, l2_leaf_reg =

7, iterations = 900

nbins = 18

KDEy, and GPACC. The SC-MQ ensemble achieved the best performance, with
MAE scores of 0.0129 and 0.0127 on the validation and test sets, respectively.
It also obtained the lowest MRAE scores of 1.1160 and 1.0786 on the validation
and test sets.

Table 3. Performance comparison of methods on validation and test sets for T2.

Method
Validation set Test set

MAE MRAE MAE MRAE

EDy 0.0137 1.3053 0.0135 1.2390

EMQ-ini 0.0139 1.1351 0.0137 1.1038

KDEy 0.0179 1.4542 0.0176 1.4355

GPACC 0.0155 1.2021 0.0155 1.1950

SC-MQ 0.0129 1.1160 0.0127 1.0786

The performance of SC-MQ can be attributed to the combination of a ro-
bust base classifier (Logistic Regression) with a diverse set of quantification
algorithms, including the novel EMQ-ini method proposed in this work. Among
the individual quantifiers, EMQ-ini was the best-performing single quantifier,
outperforming other methods like EDy, KDEy, and GPACC. By leveraging the
strengths of multiple quantifiers, with EMQ-ini being the strongest contribu-
tor while maintaining a consistent base classifier, the ensemble could e!ectively
capture the diverse characteristics of the multi-class quantification problem.

Ensemble Learning to Quantify: The CSE UNSW Team at LeQua 2024 91

Table 4 presents the selected parameters using the grid search and minimizing
the MRAE for the classifier and quantifiers used in the T2 task. Notable parame-
ters include the regularization parameter for Logistic Regression, the bandwidth
parameter for KDEy, and the solver used by GPACC. Additionally, EMQ-ini
utilized the exact training prevalences during the initialization step.

Table 4. Classifier and Quantifier selected parameters for T2.

Method Classifier Quantifier

EDy C = 1, class-weight = balanced None

KDEy C = 100, class-weight = None bandwidth = 0.14

GPACC C = 0.1, class-weight = balanced solver = minimize

EMQ-ini C = 1, class-weight = None exact_train_prev = True

4 Conclusion

The results demonstrate the e!ectiveness of the proposed ensemble approaches,
MC-SQ and SC-MQ, in addressing the binary and multi-class quantification
tasks, respectively. By combining diverse classifiers and quantifiers, these meth-
ods could leverage the strengths of individual components while mitigating their
weaknesses, leading to improved quantification performance on both tasks.

For future work, we will investigate EMQ-ini in more depth, focusing on the
e!ect of the initial point of maximum likelihood optimization on this method.
Additionally, we will evaluate EMQ-ini on various datasets to ensure its gener-
ality and robustness across di!erent scenarios.

References

1. A. Moreo and F. Sebastiani, “Tweet sentiment quantification: An experimental

re-evaluation,” PLoS One, vol. 17(9), 2022.

2. G. Forman, “Quantifying counts and costs via classification,” Data Min Knowl

Discov, vol. 17, no. 2, pp. 164–206, 2008.

3. Z. Donyavi, A. Serapio, and G. Batista, “Mc-sq: A highly accurate ensemble for

multi-class quantification,” in Proceedings of the 2023 SIAM International Confer-

ence on Data Mining (SDM). SIAM, 2023, pp. 622–630.

4. A. Maletzke, D. dos Reis, E. Cherman, and G. Batista, “Dys: a framework for

mixture models in quantification,” in AAAI Conference, vol. 33, no. 01, 2019, pp.

4552–4560.

5. T. Schumacher, M. Strohmaier, and F. Lemmerich, “A comparative evaluation of

quantification methods,” arXiv preprint arXiv:2103.03223, 2021.

6. J. J. del Coz, “Unioviedo (team2) at lequa 2022: Comparison of traditional quan-

tifiers and a new method based on energy distance.” in CLEF (Working Notes),

2022, pp. 1869–1874.

92 Z. Donyavi et al.

7. A. Moreo, P. González, and J. J. del Coz, “Kernel density estimation for multiclass

quantification,” arXiv preprint arXiv:2401.00490, 2023.

8. A. Firat, “Unified framework for quantification,” arXiv preprint arXiv:1606.00868,

2016.

9. M. Saerens, P. Latinne, and C. Decaestecker, “Adjusting the outputs of a classifier

to new a priori probabilities: a simple procedure,” Neural computation, vol. 14,

no. 1, pp. 21–41, 2002.

10. A. Moreo, A. Esuli, and F. Sebastiani, “Quapy: a python-based framework for

quantification,” in Proceedings of the 30th ACM International Conference on In-

formation & Knowledge Management, 2021, pp. 4534–4543.

Lamarr at LeQua2024: Regularized
Soft-Max Likelihood Maximization

Tobias Lotz and Mirko Bunse

Lamarr Institute for Machine Learning and Artificial Intelligence,

44227 Dortmund, Germany

{tobias.lotz,mirko.bunse}@cs.tu-dortmund.de

Abstract. As members of the Lamarr Institute, we participated in the

open LeQua2024 competition. The goal in this competition was to pre-

dict the prevalences of classes in unlabeled sets of data, given a labeled

training set. Our submission builds on the regularized maximization of a

likelihood function with constraints that are implemented through a soft-

max operator. Ultimately, this method ranked in the top three across all

four disciplines of LeQua2024; most notably, we achieved the first place

in discipline T4, a binary quantification task with covariate shift. In this

paper, we detail our approach to the competition.

Keywords: Quantification · prior probability shift · covariate shift.

1 Introduction

LeQua20241 was a competition hosted for the evaluation of quantification meth-
ods. These methods estimate class prevalences in unlabeled sets of data, i.e.,
they estimate how often each class appears in each data set [4]. To learn the
correspondence between class labels and feature vectors, a labeled training set
is provided. Unlike classification, quantification is not concerned with predicting
the label of each individual data item; what matters are aggregate predictions
for sets of data items [5]. These predictions are complicated by shifts between
the training distribution and the target distributions.

LeQua2024 consists of four disciplines that are separately evaluated. Each
discipline represents a di!erent quantification setting. Our team from the Lamarr
Institute ranked in the top three across all disciplines.

T1 Binary quantification with prior probability shift (3rd place).
T2 Multi-class quantification with prior probability shift (2nd place).
T3 Ordinal quantification with prior probability shift (2nd place).
T4 Binary quantification with covariate shift (1st place).

In Sec. 2, we introduce the quantification method that we used across all
disciplines. Sec. 3 details our optimization of the method’s hyper-parameters.
We conclude with Sec. 4.
1

See https://lequa2024.github.io

https://lequa2024.github.io

94 T. Lotz and M. Bunse

2 Method

Let C be the number of classes and let P = {p → 0 : 1 =
∑C

i=1 pi} be the set of
valid class prevalence vectors. Making a prediction, such that p̂i is an estimate
of P(Y = i) in set unlabeled data items, can be realized through the constrained
minimization of a loss function ω : P ↑ R,

p̂ = argmin
p→P

ω(p) (1)

where ω is typically defined in terms of an unlabeled data set D = {x ↓ X}.
Our approach to all disciplines of LeQua2024 evolves around three aspects:

the choice of the loss function, the implementation of the p ↓ P constraint, and
regularization. Regularization is the only aspect through which we adapt our
method to the particularities of each discipline.

Loss Function We employ the negative log-likelihood loss proposed by Alexan-
dari et al. [1]. This choice is motivated by an exceptional performance recently
reported for this loss function in combination with kernel density estimates [6]
and by the winning performance of a closely related method in the first edi-
tion of LeQua in 2022 [7]. We opted against kernel densities because our initial
experiments did not verify a performance improvement due to them.

Constraints We ensure that p̂ ↓ P by optimizing over a latent vector l ↓ RC↑1

that we feed through a soft-max operator ε : RC↑1 ↑ P [2].

Regularization In T3, we promote solutions that we deem ordinally plausible [3].
In all other disciplines, we promote uniform solutions, assuming that the testing
protocol of the competition exhibits a slight preference towards these outcomes.
The impact of regularization is controlled through a hyper-parameter ϑ → 0.

Combining all of the above aspects, our prediction p̂ = ε(̂l) ↓ P is obtained
after optimizing

l̂ = argmin
l→RC→1

↔
C∑

i=1

log
∑

x→D

P̂(Y = i | X = x)

P̂(Y = i)
· [ε(l)]i + r(l) (2)

where [ε(l)]i =






1
1+

∑C→1
j=1 exp(lj)

if i = 1

exp(li)

1+
∑C→1

j=1 exp(lj)
else

and r(l) =






ϑ ·
∑C↑1

i=1

(
[ε(l)]i ↔ [ε(l)]i+1

)2
for T1, T2, T4

ϑ ·
∑C↑2

i=1

(
[ε(l)]i ↔ 2[ε(l)]i+1 + [ε(l)]i+2

)2
for T3

Lamarr at LeQua2024 95

We estimate the posteriors P̂(Y = i | X = x) through a multi layer perceptron
(MLP) classifier, except for discipline T4, where a logistic regression outper-
formed the MLP on the validation set. The prior P̂(Y = i) is estimated on the
training set, which is also used to train the classifier within each discipline.

The numerical optimization of the loss function in Eq. 2 is realized through
an unconstrained Newton conjugate gradient trust-region method [9], as it is
implemented in the SciPy package [8]. The full implementation of our approach
is publicly available on GitHub2

3 Hyper-Parameter Optimization

Each discipline of LeQua2024 provides, in addition to a labeled training set,
a validation set for hyper-parameter optimization. This validation set consists
of multiple sets D of data items, each sampled with a discipline-specific type
of distribution shift. Performance evaluations on the validation data act as an
estimate of the final performance on the test data; for the latter, the ground-
truth remained hidden throughout the competition. Participants were able to
choose those hyper-parameters that perform best during validation.

In order to optimize our hyper-parameter selection, we employed a coarse-to-
fine grid-search adaptation strategy, starting from heuristically chosen starting
grids. For numeric parameters, if the optimal value is located at the smallest or
largest value in the grid, we shift it in such a way, that the currently optimal value
now lies at the center. Otherwise, we decrease the di!erence of the candidate
values, in order to allow finer updates to further improve the performance.

The final hyper-parameters that we selected for the di!erent classifiers can
be seen in tables 1 and 2. We note that regularization only had a minor impact
on the validation performance of our method.

Table 1. Final hyper-parameters used for MLP classifiers.

task hidden_layer_size activation alpha learning_rate solver ω
T1 512 tanh 1e→1 1e→3 sgd 0

T2 512 tanh 1e→1 1e→5 adam 0

T3 320 tanh 1e→6 1e→3 adam 1e→3

Table 2. Final hyper-parameters used for logistic regressions.

task C class_weight ω
T4 0.43571 None 1e→5

2
See https://github.com/tobiaslotz/lequa2024

https://github.com/tobiaslotz/lequa2024

96 T. Lotz and M. Bunse

4 Conclusion

Our participation in LeQua2024 evolves around a maximum likelihood estimate
with constraints that are implemented through a soft-max operator. We em-
ployed this estimate across all four disciplines of LeQua2024, with a discipline-
specific regularization that only played a minor role on quantification perfor-
mance. Our method achieved top-ranking results throughout the competition.

The reasons for this outcome—and their implications on future research—
remain yet to be discussed. Two essential prerequisites for this discussion are i)
specific information about the submissions of the other teams and ii) specific in-
formation about the pre-processing of LeQua’s data. Lacking both prerequisites
at the moment, we are looking forward to the conclusions that are to be drawn
by LeQua’s organizers.

References

1. Alexandari, A., Kundaje, A., Shrikumar, A.: Maximum likelihood with bias-

corrected calibration is hard-to-beat at label shift adaptation. In: Int. Conf. on Mach.

Learn. pp. 222–232 (2020), http://proceedings.mlr.press/v119/alexandari20a.html

2. Bunse, M.: On multi-class extensions of adjusted classify and count. In: Int. Worksh.

on Learn. to Quantify: Meth. and Appl. pp. 43–50 (2022), https://lq-2022.github.

io/proceedings/CompleteVolume.pdf

3. Bunse, M., Moreo, A., Sebastiani, F., Senz, M.: Ordinal quantification through

regularization. In: Europ. Conf. on Mach. Learn. and Knowl. Discov. in Databa-

ses. pp. 36–52. Springer (2022). https://doi.org/10.1007/978-3-031-26419-1_3

4. Esuli, A., Fabris, A., Moreo, A., Sebastiani, F.: Learning to Quantify. Inform. Re-

triev. Series, Springer (2023). https://doi.org/10.1007/978-3-031-20467-8

5. Forman, G.: Quantifying counts and costs via classification. Data Mining and Knowl.

Discov. pp. 164–206 (2008). https://doi.org/10.1007/s10618-008-0097-y

6. Moreo, A., González, P., del Coz, J.J.: Kernel density estimation for multiclass

quantification (2024), https://arxiv.org/abs/2401.00490

7. Senz, M., Bunse, M.: DortmundAI at LeQua 2022: Regularized SLD. In: Conf.

and Labs of the Eval. Forum. pp. 1911–1915 (2022), http://ceur-ws.org/Vol-3180/

paper-152.pdf

8. Virtanen, P., et al.: SciPy 1.0: Fundamental Algorithms for Scientific Com-

puting in Python. Nature Meth. pp. 261–272 (2020). https://doi.org/10.1038/

s41592-019-0686-2

9. Wright, S.J., Nocedal, J.: Numerical optimization. Operations Res. and Financial

Engin., Springer, 2nd edn. (2006). https://doi.org/10.1007/978-0-387-40065-5

http://proceedings.mlr.press/v119/alexandari20a.html
https://lq-2022.github.io/proceedings/CompleteVolume.pdf
https://lq-2022.github.io/proceedings/CompleteVolume.pdf
https://doi.org/10.1007/978-3-031-26419-1_3
https://doi.org/10.1007/978-3-031-26419-1_3
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/978-3-031-20467-8
https://doi.org/10.1007/s10618-008-0097-y
https://doi.org/10.1007/s10618-008-0097-y
https://arxiv.org/abs/2401.00490
http://ceur-ws.org/Vol-3180/paper-152.pdf
http://ceur-ws.org/Vol-3180/paper-152.pdf
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1007/978-0-387-40065-5
https://doi.org/10.1007/978-0-387-40065-5

UniOvi Team at LeQua 2024: Quantification via

Gaussian Latent Space Representations

Olaya Pérez-Mon
[0000→0002→4527→6698]

and Pablo González
[0000→0002→9250→0920]

Artificial Intelligence Center, University of Oviedo, Gijón, Asturias, Spain
UO257319@uniovi.es

gonzalezgpablo@uniovi.es

Abstract. Most traditional quantification methods often depend on
prior probability shift assumptions to develop models that use classifiers
for optimal prevalence estimation. In contrast, the idea of this team
was to introduce an end-to-end neural network that utilizes Gaussian
distributions to achieve invariant sample representations. This paper
describes this deep learning architecture and its application to the LeQua
2024 quantification competition, specifically, addressing tasks T2, T3,
and T4.

1 Motivation

Our main goal in this competition was to evaluate the performance of a novel

deep-learning representation layer for quantification. This layer is based on

modelling latent spaces using Gaussian distributions, to obtain an invariant

representation of bags of examples. Using this layer in a deep neural network,

with an architecture suited for quantification [1], we can undertake prevalence

estimation tasks and compare the performance of our method against some of

the most popular quantification algorithms, which served as baselines in the

competition, as well as against the other participants.

We focused on tackling tasks T2 and T3, both complex multiclass problems,

as well as T4, which, despite being a binary problem, presents the added challenge

of covariate shift. We opted not to participate in task T1, a binary quantification

problem where traditional quantification methods are highly e!ective and much

simpler (using our approach for this task might have been seen as overkill). Our

solution delivered consistently strong results in the multiclass tasks (T2 and T3),

achieving a gold medal in both tasks. In the binary task with covariate shift,

T4, we achieved fifth place. The setup and methodology employed to tackle the

competition tasks will be detailed in Section 2.

2 Method

For this competition, we used a deep neural network designed to address quan-

tification problems. Our approach builds on the same architecture as Deep

98 Olaya Pérez-Mon and Pablo González

Quantification Network (DQN) [1], but instead of using pooling layers for rep-

resenting the bags, we use Gaussian distributions. The architecture consists of

three main components: i) a feature extraction module, which is adapted to

the specific task, it projects features into latent spaces. ii) a bag representation

module that summarizes the feature vectors into a numerical representation of

each bag. In our case, Gaussian distributions are used to model the latent space.

And, iii) a quantification module, a combination of dense linear layers, that learns

the relationship between bag representations and bag prevalences, outputting

prevalence estimates due to a softmax activation function.

This architecture is flexible, allowing the optimization of di!erent loss func-

tions, such as the Relative Absolute Error (RAE) for tasks T2 and T4, and the

Normalized Match Distance (NMD) for T3. In addition, it can be trained using

bags labelled by prevalence, with or without individual example labels.

2.1 Layer details

Our method introduces a novel approach to generating invariant bag features

using learnable multivariate Gaussian distributions. This representation layer

models the latent space, to which the bag examples are projected, by covering

it with Gaussian distributions, each defined by a mean vector and a covariance

matrix, which are learnable parameters of the network. Each example projected

in the latent space is evaluated against the Gaussian distributions by calculating

their likelihoods. The mean likelihood across all examples in a bag then shows

how well each Gaussian represents the entire bag, resulting in a compact and

invariant representation in the latent space.

In order to capture more useful information about the bags, we propose an

extension of the network incorporating multiple latent space representations,

each modelled with its own Gaussian distributions. To favor learning di!erent

latent spaces with di!erent information, we use the Centered Kernel Alignment

(CKA) score (for more information, please, see [2]). Since this metric measures

the similarity between latent spaces, we incorporated it into the loss function we

are minimizing to make them as distinct and informative as possible.

Another important aspect of our approach is that the network can be trained

using only bags labelled by prevalence, but can also benefit when utilizing

individual labelled examples, adding a classification layer to the feature extraction

module that allows the network to learn representations, combining quantification

and classification losses during training. It is also possible to train the net by

combining these two techniques.

When labelled bags are limited, we use data augmentation techniques to

generate new bags. There are two options: i) when only individual labels are

available, we generate new bags using the APP protocol [3] that allows us to

generate bags with a desired prevalence and, ii) when only bag prevalences are

available, we can mix two real bags producing a new augmented bag whose

prevalence is the average of the original bags. When possible, we can combine

both strategies.

Quantification via Gaussian Latent Space Representations 99

3 Experiments

The datasets used in this study correspond to the T2, T3 and T4 tasks from the

LeQua 2024 competition. T2 is a multiclass problem with prior probability shift,

T3 is a multiclass ordinal quantification problem, and T4 is a binary problem

with covariate shift.

The o"cial loss function for T2 and T4 is the Relative Absolute Error (RAE)

and Normalized Mean Distance (NMD) for task T3 (see [4] for more information

on quantification loss functions).

The experimental setup was tailored to optimize the network according to the

o"cial loss function for each task. Our quantification method’s flexibility allows

for various training data configurations, as explained in Section 2. Specifically,

for T2 and T4, half of the training bags were generated using APP from example-

labelled data, while the other half were labelled by prevalence (with 700 out

of 1,000 bags used for training and 300 for validation). To prevent overfitting,

the labelled data was augmented by randomly mixing real bags, as described in

Section 2.

For T3, the network was trained exclusively on bags generated using APP

from the example-labeled dataset, with the 1,000 training bags used for validation

and early stopping. In this case, the label information was incorporated into the

network helping its convergence.

The number of Gaussian distributions to cover the latent space was fixed to

100. For T2, the most challenging task, we used 18 di!erent latent spaces, each

in 5 dimensions. The number of latent spaces for T3 was set to 9, while the other

parameters remained unchanged. The limitation in the number of latent spaces

was given due to memory limitations in the GPU used for training (12Gb). For

T4, we utilized 1 latent space with 17 dimensions and 156 Gaussians. For T4,

these parameter values were found using Optuna [5]. For T2 and T3 parameters

were chosen manually, without using any automated procedure.

3.1 Results

In this section, we present the performance of our proposed method on the three

tasks: T2, T3, and T4.

For the T2 dataset, see Table 1, our method significantly outperforms all

baseline methods as well as other participants’ ones, in terms of the optimized

loss function, Relative Absolute Error (RAE). The performance gap is signifi-

cant, demonstrating the e!ectiveness of our approach in handling this complex

multiclass problem with prior probability shift.

The T3 dataset presents a multiclass ordinal problem with five classes, where

the objective loss function to optimize is the NMD, see Table 1. In this case,

our method also demonstrates superior performance, although the margin of

improvement is narrower compared to T2. Nevertheless, our approach proves to

be more e!ective in dealing with the complexities of ordinal quantification.

Finally, for the T4 dataset, see Table 1, our method was outperformed by

other teams’ approaches. In this case, our thought was that the ability to train

100 Olaya Pérez-Mon and Pablo González

Ranking T2 (RAE) T3 (NMD) T4 (RAE)

1 0.9217 (Ours) 0.0644 (Ours) 0.1093 (tobiaslotz)

2 1.0302 (tobiaslotz) 0.0659 (tobiaslotz) 0.1150 (EMQ)
3 1.0786 (hustav) 0.0668 (PCC) 0.1156 (DistMatching-y)
4 1.1616 (EMQ) 0.0690 (KDEy) 0.1180 (KDEy)
5 1.1942 (PACC) 0.0721 (juanjodelcoz) 0.1298 (Ours)

Table 1: Top five competitors for each of the tasks in which we competed.

the network using bags with a particular type of shift might prove an advantage

when this shift is reproduced in the test bags. In practice, quantification methods

using an underlying classifier and designed for prior probability shift, performed

substantially well in this task, with errors very similar to those obtained by teams

in task T1.

4 Conclusions

We have reached several interesting conclusions. Firstly, our method has demon-

strated strong adaptability across a variety of quantification scenarios, achieving

robust results in the presence of prior probability shift, covariate shift and, even in

ordinal quantification problems. It is particularly e!ective in handling multiclass

problems, which are often more complex and demanding.

Additionally, our method can optimize di!erent loss functions, such as RAE

and NMD, delivering strong results in both cases. Furthermore, our approach is

flexible regarding training data. It can handle situations where data is labelled

by individual examples, where bags are labelled by prevalence, or when there is

a combination of both cases.

Quantification via Gaussian Latent Space Representations 101

References

1. Lei Qi, Mohammed Khaleel, Wallapak Tavanapong, Adisak Sukul, and David Pe-
terson. A framework for deep quantification learning. In Machine Learning and
Knowledge Discovery in Databases: European Conference, ECML PKDD 2020, Ghent,
Belgium, September 14–18, 2020, Proceedings, Part I, pages 232–248. Springer, 2021.

2. Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geo!rey Hinton. Similarity
of neural network representations revisited, 2019.

3. Andrea Esuli, Alessandro Fabris, Alejandro Moreo, and Fabrizio Sebastiani. Learning
to Quantify. Springer, Cham, CH, 2023.

4. Fabrizio Sebastiani. Evaluation measures for quantification: An axiomatic approach.
Information Retrieval Journal, 23(3):255–288, 2020.

5. Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.
Optuna: A next-generation hyperparameter optimization framework. In Proceedings
of the 25rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2019.

UNIOESTE at LeQua 2024: Combining the

top-ranked quantifiers

Luiz Luth, Daniel Ojeda, Guilherme Gomes, and Andre Maletzke

Western Paraná State University, Foz do Iguaçu, Brazil

{luiz.junior90, daniel.ojeda, guilherme.gomes,
andre.maletzke}@unioeste.br

Abstract. Keywords: Counting · Class prevalence shift · label shift

1 Introduction

In recent years, the problem of class prior estimation (also known as quantifi-
cation or learning to quantify) has gained significant attention due to its im-
portance in real-world applications where estimating the distribution of classes
in unlabelled data is crucial. The challenge extends beyond classifying individ-
ual instances to accurately predicting the proportion of di!erent classes in a
dataset, a task complicated by prior probability shift (or label shift), where the
class distribution in the test data di!ers from the training data, making standard
supervised learning approaches less e!ective.

The LeQua 2024 competition addresses these challenges through several
tasks, and our proposal specifically aims to tackle Task T1. This task focuses
on evaluating binary quantifiers, which are tasked with predicting the relative
frequencies of a class and its complement under conditions of prior probability
shift.

Our proposal for Task T1 of the LeQua 2024 competition addresses the
challenge of predicting class proportions under prior probability shift using a
straightforward and e!ective strategy. Instead of relying on a single quantifier,
we propose to run several quantifiers on the target dataset. Each quantifier
generates a prediction for the class proportions, and we then rank these quan-
tifiers based on their performance. Once ranked, we select the top-performing
quantifiers and form the final prediction by averaging the predictions of the top-
ranked models. This approach leverages the strengths of multiple quantification
methods, increasing robustness and reducing the reliance on any one model. By
combining the predictions of the best-performing quantifiers, we aim to produce
more reliable and accurate estimates of the class proportions, e!ectively tackling
the prior probability shift that characterizes Task T1.

2 Method

This section describes the method applied to obtain predictions for Task T1.
First, we evaluated a set of base classifiers for Task T1, including CatBoost [1],

UNIOESTE at LeQua 2024: Combining the top-ranked quantifiers 103

Random Forests [2], Support Vector Machines [3], and XGBClassifier [4]. We
conducted a grid search for each classifier to determine the best hyperparameters,
as detailed in Table 1.

Table 1. Parameter grids for di!erent models

Model Parameter Values
XGBoost n_estimators {100, 200, 300}

gamma {0.01, 0.1}

max_depth {3, 6, 9, 12}

learning_rate {0.001, 0.01, 0.1, 1}

CatBoost depth {4, 5, 6, 7, 8, 9, 10}

learning_rate {0.01, 0.05, 0.2, 0.5, 0.8, 1.0}

iterations {10, 20, 50, 100}

RandomForest n_estimators {100, 200, 300, 400, 500, 600, 700, 800}

criterion {gini, entropy}
max_depth {-1, 10, 50, 100}

SVC kernel {linear, poly, rbf, sigmoid}
gamma {scale, auto}

Furthermore, to account for label shift, we applied the correction technique
proposed by Lipton et al. (2018) [5], which adjusts the predictions to mitigate
the impact of prior probability shift in the test data.

Next, we employed several well-established quantifiers to generate the class
proportion estimates. We selected the best-performing quantifiers for binary
problems as described by Schumacher et al. (2021) [6]. We used the follow-
ing quantifiers: DyS, HDy, SORD, CC, ACC, MS, and EMQ, each with their
respective default parameters.

Finally, to generate the predictions, we ranked all the quantifiers and mea-
sured the Mean Absolute Error (MAE) for each individual. We also evaluated the
performance by combining the quantifiers in groups of three and five, calculat-
ing the average prediction for each group. We then compared the performance of
the individual quantifiers and their combinations, selecting the best-performing
setup based on these results to predict the test set. This approach ensured that
we identified the most robust configuration for accurate quantification under the
conditions of prior probability shift.

3 Results

The results of our experiments indicated that the best-performing setup for Task
T1 was a combination of both an individual classifier and a group of quantifiers.
Specifically, the SVC classifier with gamma = auto and kernel = poly yielded
the most accurate results among the base classifiers. In terms of quantifiers, the
combination of DyS, HDy, and EMQ proved to be the most e!ective, providing
the lowest Mean Absolute Error when their predictions were averaged. This

104 Luth et al.

combined approach outperformed other configurations, and thus it was selected
to predict the test set, ensuring robust and accurate quantification under the
conditions of a prior probability shift.

4 Conclusion

Our approach to Task T1 of the LeQua 2024 competition e!ectively addressed
the challenge of prior probability shift by combining multiple quantification tech-
niques and leveraging an optimized classifier. To further enhance our results, we
applied a correction technique that adjusts predictions to mitigate the impact of
prior probability shift in the test data, ensuring more reliable class proportion
estimates. By averaging the predictions of the top quantifiers and applying the
correction, we successfully selected the best-performing setup, which proved to
be e!ective in handling distributional shifts. This strategy highlights the impor-
tance of combining classifier performance, quantification methods, and correction
techniques to achieve high predictive accuracy under challenging conditions.

References

1. L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,

“Catboost: unbiased boosting with categorical features, 2017,” arXiv preprint
arXiv:1706.09516, vol. 201, 2017.

2. L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001.

3. C. Cortes, “Support-vector networks,” Machine Learning, 1995.

4. T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, 2016, pp. 785–794.

5. Z. Lipton, Y.-X. Wang, and A. Smola, “Detecting and correcting for label shift with

black box predictors,” in International conference on machine learning. PMLR,

2018, pp. 3122–3130.

6. T. Schumacher, M. Strohmaier, and F. Lemmerich, “A comparative evaluation of

quantification methods,” arXiv preprint arXiv:2103.03223, 2021.

